Напряжённость электрического поля и принцип суперпозиции. Определение напряженности в любой точке электрического поля

В соответствии с теорией близкодействия, взаимодействия между заряженными телами, которые удалены друг от друга, осуществляется посредством полей (электромагнитных), создаваемых этими телами в окружающем их пространстве. Если поля создаются неподвижными частицами (телами), то поле является электростатическим. Если поле не изменяется во времени, то его называют стационарным. Электростатическое поле является стационарным. Это поле -- частный случай электромагнитного поля. Силовой характеристикой электрического поля служит вектор напряженности, который можно определить как:

где $\overrightarrow{F}$- сила, действующая со стороны поля на неподвижный заряд q, который называют иногда «пробным». При этом необходимо, чтобы «пробный» заряд был мал, чтобы не искажал поле, напряженность которого с его помощью измеряют. Из уравнения (1) видно, что напряженность совпадает по направлению с силой, с которой поле действует на единичный положительный «пробный заряд».

Напряженность электростатического поля не зависит от времени. Если напряженность во всех точках поля одинакова, то поле называют однородным. В противном случае поле неоднородно.

Силовые линии

Для графического изображения электростатических полей используют понятие силовых линий.

Определение

Силовыми линиями или линиями напряженности поля, называются линии, касательные к которым в каждой точке поля совпадают с направлениями векторов напряженности в этих точках.

Силовые линии электростатического поля являются разомкнутыми. Они начинаются на положительных зарядах и заканчиваются на отрицательных. Иногда они могут уходить в бесконечность или приходить из бесконечности. Силовые линии поля не пересекаются.

Вектор напряженности электрического поля подчиняется принципу суперпозиции, а именно:

\[\overrightarrow{E}=\sum\limits^n_{i=1}{{\overrightarrow{E}}_i(2)}.\]

Результирующий вектор напряженности поля может быть найден как векторная сумма напряженностей составляющих его «отдельных» полей. Если заряд распределен непрерывно (нет необходимости учитывать дискретность), то суммарная напряженность поля найдется как:

\[\overrightarrow{E}=\int{d\overrightarrow{E}}\ \left(3\right).\]

В уравнении (3) интегрирование проводят по области распределения зарядов. Если заряды распределены по линии ($\tau =\frac{dq\ }{dl}$ -линейная плотность распределения заряда), то интегрирование в (3) проводят по линии. Если заряды распределены по поверхности и поверхностная плотность распределения $\sigma=\frac{dq\ }{dS}$, то интегрируют по поверхности. Интегрирование проводят по объему, если имеют дело с объемным распределением заряда: $\rho =\frac{dq\ }{dV}$, где $\rho $ -- объемная плотность распределения заряда.

Напряженность поля

Напряжённость поля в диэлектрике равна векторной сумме напряженностей полей, которые создают свободные заряды ($\overrightarrow{E_0}$) и связанные заряды ($\overrightarrow{E_p}$):

\[\overrightarrow{E}=\overrightarrow{E_0}+\overrightarrow{E_p}\left(4\right).\]

Очень часто в примерах мы сталкиваемся с тем, что диэлектрик является изотропным. В таком случае, напряжённость поля может быть записана как:

\[\overrightarrow{E}=\frac{\overrightarrow{E_0}}{\varepsilon }\ \left(5\right),\]

где $\varepsilon $- относительная диэлектрическая проницаемость среды в рассматриваемой точке поля. Таким образом, из (5) очевидно, что однородном в изотропном диэлектрике напряженность электрического поля в $\varepsilon $ раз меньше, чем в вакууме.

Напряженность электростатического поля системы точечных зарядов равна:

\[\overrightarrow{E}=\frac{1}{4\pi {\varepsilon }_0}\sum\limits^n_{i=1}{\frac{q_i}{\varepsilon r^3_i}}\overrightarrow{r_i}\ \left(6\right).\]

В системе СГС напряженность поля точечного заряда в вакууме равна:

\[\overrightarrow{E}=\frac{q\overrightarrow{r}}{r^3}\left(7\right).\]

Задание: Заряд равномерно распределен по четверти окружности радиуса R с линейной плотностью $\tau $. Найти напряженность поля в точке (А), которая была бы центром окружности.

Выделим на заряженной части окружности элементарный участок ($dl$), который будет создавать элемент поля в точке А, для него запишем выражение для напряженности (будем использовать систему СГС), в таком случае выражение для $d\overrightarrow{E}$ имеет вид:

Проекция вектора $d\overrightarrow{E}$ на ось OX имеет вид:

\[{dE}_x=dEcos\varphi =\frac{dqcos\varphi }{R^2}\left(1.2\right).\]

Выразим dq через линейную плотность заряда $\tau $:

Используя (1.3) преобразуем (1.2), получим:

\[{dE}_x=\frac{2\pi R\tau dRcos\varphi }{R^2}=\frac{2\pi \tau dRcos\varphi }{R}=\frac{\tau cos\varphi d\varphi }{R}\ \left(1.4\right),\]

где $2\pi dR=d\varphi $.

Найдем полную проекцию $E_x$, интегрированием выражения (1.4) по $d\varphi $, где угол изменяется $0\le \varphi \le 2\pi $.

Займемся проекцией вектора напряженности на ос OY, по аналогии без особых пояснений запишем:

\[{dE}_y=dEsin\varphi =\frac{\tau }{R}sin\varphi d \varphi \ \left(1.6\right).\]

Интегрируем выражение (1.6), угол изменяется $\frac{\pi }{2}\le \varphi \le 0$, получаем:

Найдем модуль вектора напряженности в точке А, используя теорему Пифагора:

Ответ: Напряженность поля в точке (А) равна $E=\frac{\tau }{R}\sqrt{2}.$

Задание: Найдите напряженность электростатического поля равномерно заряженной полусферы, радиус которой равен R. Поверхностная плотность заряда равна $\sigma$.

Выделим на поверхности заряженной сферы элементарный заряд $dq$, который расположен на элементе площади $dS.$ В сферических координатах $dS$ равен:

где $0\le \varphi \le 2\pi ,\ 0\le \theta \le \frac{\pi }{2}.$

Запишем выражение для элементарной напряженности поля точечного заряда в системе СИ:

Проектируем вектор напряженности на ось OX, получим:

\[{dE}_x=\frac{dqcos\theta }{4 \pi \varepsilon_0R^2}\left(2.3\right).\]

Элементарный заряд выразим через поверхностную плотность заряда, получим:

Подставляем (2.4) в (2.3), используем (2.1) интегрируем, получаем:

Легко получить, что $E_Y=0.$

Следовательно, $E=E_x.$

Ответ: Напряженность поля полусферы заряженной по поверхности в ее центре равна $E=\frac{\sigma}{4{\varepsilon }_0}.$

Заряженные тела могут воздействовать друг на друга без соприкосновения через электрическое поле. Поле, которое создается неподвижными электрическими частицами, называется электростатическим.

Инструкция

Если в электрическое поле, создаваемое зарядом Q, поместить еще один заряд Q0, то оно будет воздействовать на него с определенной силой. Это характеристика называется напряженностью электрического поля E. Она представляет собой отношение силы F, с которое поле действует на положительный электрический заряд Q0 в определенной точке пространства, к значению этого заряда: E = F/Q0.

В зависимости от конкретной точки пространства, значение напряженности поля E может меняться, что выражается формулой Е = Е (x, y, z, t). Поэтому напряженность электрического поля относится к векторным физическим величинам.

Поскольку напряженность поля зависит от силой, действующей на точечный заряд, то вектор напряженности электрического поля E одинаков с вектором силы F. Согласно закону Кулона, сила, с которой взаимодействуют две заряженные частицы в вакууме, направлена по прямой линии, которая соединяет эти заряды.

Майкл Фарадей предложил наглядно изображать напряженность поля электрического заряда с помощью линий напряженности. Эти линии совпадают с вектором напряженности во всех точках по касательной. На чертежах их принято обозначать стрелками.

В том случае, если электрическое поле однородно и вектор его напряженности постоянен по своему модулю и направлению, то линии напряженности параллельны с ним. Если электрическое поле создается положительно заряженным телом, линии напряженности направлены от него, а в случае с отрицательно заряженной частицей - по направлению к нему.

Обратите внимание

Вектор напряженности имеет лишь одно направление в каждой точке пространства, поэтому линии напряженности никогда не пересекаются.

>>Физика: Напряженность электрического поля. Принцип суперпозиции полей

Недостаточно утверждать, что электрическое поле существует. Надо ввести количественную характеристику поля. После этого электрические поля можно будет сравнивать друг с другом и продолжать изучать их свойства.
Электрическое поле обнаруживается по силам, действующим на заряд. Можно утверждать, что мы знаем о поле все, что нам нужно, если будем знать силу, действующую на любой заряд в любой точке поля.
Поэтому надо ввести такую характеристику поля, знание которой позволит определить эту силу.
Если поочередно помещать в одну и ту же точку поля небольшие заряженные тела и измерять силы, то обнаружится, что сила, действующая на заряд со стороны поля, прямо пропорциональна этому заряду. Действительно, пусть поле создается точечным зарядомq 1 . Согласно закону Кулона (14.2) на заряд q 2 действует сила, пропорциональная заряду q 2 . Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как характеристика поля. Эту характеристику называютнапряженностью электрического поля. Подобно силе, напряженность поля – векторная величина ; ее обозначают буквой . Если помещенный в поле заряд обозначить через q вместо q 2 , то напряженность будет равна:

Напряженность поля в данной точке равна отношению силы, с которой поле действует на точечный заряд, помещенный в эту точку, к этому заряду.
Отсюда сила, действующая на заряд q со стороны электрического поля, равна:

Направление вектора совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующей на отрицательный заряд.
Напряженность поля точечного заряда. Найдем напряженность электрического поля, создаваемого точечным зарядом q 0 . По закону Кулона этот заряд будет действовать на положительный заряд q с силой, равной

Модуль напряженности поля точечного заряда q 0 на расстоянии r от него равен:

Вектор напряженности в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд (рис.14.7 ) и совпадает с силой, действующей на точечный положительный заряд, помещенный в данную точку.

Принцип суперпозиции полей . Если на тело действует несколько сил, то согласно законам механики результирующая сила равна геометрической сумме этих сил:

На электрические заряды действуют силы со стороны электрического поля. Если при наложении полей от нескольких зарядов эти поля не оказывают никакого влияния друг на друга, то результирующая сила со стороны всех полей должна быть равна геометрической сумме сил со стороны каждого поля. Опыт показывает, что именно так и происходит на самом деле. Это означает, что напряженности полей складываются геометрически.
если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых и т. д., то результирующая напряженность поля в этой точке равна сумме напряженностей этих полей:

причем напряженность поля, создаваемая отдельным зарядом, определяется так, как будто других зарядов, создающих поле, не существует.
Благодаря принципу суперпозиции для нахождения напряженности поля системы заряженных частиц в любой точке достаточно знать выражение (14.9) для напряженности поля точечного заряда. На рисунке 14.8 показано, как определяется напряженность поля в точке A , созданная двумя точечными зарядами q 1 и q 2 , q 1 >q 2

Введение электрического поля позволяет разделить задачу вычисления сил взаимодействия заряженных частиц на две части. Сначала вычисляют напряженность поля, созданного зарядами, а затем по известной напряженности определяют силы. Такое разделение задачи на части обычно облегчает расчеты сил.

???
1. Что называется напряженностью электрического поля?
2. Чему равна напряженность поля точечного заряда?
3. Как направлена напряженность поля зарядаq 0 , если q 0 >0 ? если q 0 <0 ?
4. Как формулируется принцип суперпозиции полей?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Инструкция

Если в электрическое поле, создаваемое зарядом Q, поместить еще один заряд Q0, то оно будет воздействовать на него с определенной силой. Это называется напряженностью электрического поля E. Она представляет собой отношение силы F, с которое поле действует на положительный электрический заряд Q0 в определенной точке пространства, к значению этого заряда: E = F/Q0.

В зависимости от конкретной точки пространства, значение напряженности поля E может меняться, что выражается формулой Е = Е (x, y, z, t). Поэтому напряженность электрического поля относится к векторным физическим величинам.

Поскольку напряженность поля зависит от силой, действующей на точечный заряд, то вектор напряженности электрического поля E одинаков с вектором силы F. Согласно закону Кулона, сила, с которой взаимодействуют две заряженные частицы в вакууме, направлена по , которая соединяет эти заряды.

Видео по теме

Объектами векторной алгебры являются отрезки прямой, имеющие направление и длину, называемую модулем. Чтобы определить модуль вектора , следует извлечь квадратный корень из величины, представляющей собой сумму квадратов его проекций на координатные оси.

Инструкция

Векторы характеризуются двумя основными свойствами: длиной и направлением. Длина вектора или нормой и представляет собой скалярное значение, расстояние от точки начала до точки конца. Оба применяются для графического изображения различных или действий, например, физических сил, движения элементарных частиц и пр.

Местоположение вектора в двухмерном или трехмерном пространстве не влияет на его свойства. Если перенести его в другое место, то изменятся лишь координаты его концов, однако модуль и направление останутся прежними. Эта независимость позволяет использовать векторной алгебры в различных вычислениях, например, углов между пространственными прямыми и плоскостями.

Каждый вектор можно задать координатами его концов. Рассмотрим для начала двухмерное пространство: пусть начало вектора находится в точке А (1, -3), а – в точке В (4, -5). Чтобы найти их проекции, опустите перпендикуляры на ось абсцисс и ординат.

Определите проекции самого вектора , которые можно вычислить по формуле:АВх = (xb - xa) = 3;ABy = (yb - ya) = -2, где:ABx и ABy – проекции вектора на оси Ох и Оу;xa и xb – абсциссы точек А и В;ya и yb – соответствующие ординаты.

В графическом изображении вы увидите прямоугольный треугольник, образованный катетами с длинами, равными проекциям вектора . Гипотенузой треугольника является величина, которую нужно вычислить, т.е. модуль вектора . Примените теорему Пифагора:|АВ|² = ABx² + ABy² → |AB| = √((xb - xa)² + (yb – ya)²) = √13.

Пусть в рассмотренном примере za = 3, zb = 8, тогда:zb – za = 5;|AB| = √(9 + 4 + 25) = √38.

Видео по теме

Для того чтобы определить модуль точечных зарядов одинаковой величины, измерьте силу их взаимодействия и расстояние между ними и произведите расчет. Если же нужно найти модуль заряда отдельных точечных тел, вносите их в электрическое поле с известной напряженностью и измеряйте силу, с которой поле действует на эти заряды.

12. Диэлектрики в эл.поле. Молекулы полярных и неполярных диэлектриков в эл.поле. Поляризация диэлектриков. Виды поляризации.

1. Полярные диэлектрики.

В отсутствии поля каждый из диполей обладает электрическим моментом, но вектора электрических моментов молекул расположены в пространстве хаотично и сумма проекций электрических моментов на любое направление равна нулю:

Если теперь диэлектрик поместить в электрическое поле (рис. 18), то на каждый диполь начнет действовать пара сил, которая создаст момент под действием которого диполь будет поворачиваться вокруг оси, перпендикулярной плечу, стремясь к конечному положению, когда вектор электрического момента будет параллелен вектору напряженности электрического поля. Последнему будет мешать тепловое движение молекул, внутреннее трение и т.д. и поэтому

электрические моменты диполей будут составлять некоторые углы с направлением вектора внешнего поля, но теперь уже у большего числа молекул будут составляющие проекции электрических моментов на направление, совпадающее, например, с напряженностью поля и сумма проекций всех электрических моментов уже будет отлична от нуля.

Величина, показывающая способность диэлектрика созда-вать большую или меньшую поляризацию, то есть харак-теризующая податливость диэлектрика к поляризации называется диэлектрической восприимчивостью или поляризуемостью диэлектрика ().

16. Поток вектора эл.индукции(однородного и неоднород-ного опля). Поток через замкнутую поверхность. Т.Гаусса для эл. Поля в среде.

Подобно потоку вектора напряженности можно ввести и понятие потока вектора индукции , оставив то же свойство, что и для напряженности-вектор индукции пропорционален числу линий, проходящих через единицу площади поверхности. Можно указать следующие свойства:

1.Поток через плоскую поверхность в однородном поле (рис. 22).В этом случае вектор индукции направлен по полю и поток линии индукции может быть выражен следующим образом:

2. Поток вектора индукции через поверхность в неоднородном поле подсчитывают путем разбиения поверхности на элементы столь малые, чтобы их можно было считать плоскими, а поле вблизи каждого элемента однородным. Полный поток вектора индукции будет равен:

3. Поток вектора индукции через замкнутую поверхность.

Рассмотрим поток вектора индукции пересекающего замкнутую поверхность (рис.23). Условимся направление внешних нормалей считать положительными. Тогда в тех точках поверхности, где вектор индукции направлен по касательной к линии индукции наружу, угол

и поток линий индукции будет положительным, а там, где вектор D индукции будет положительным, а там, где вектор D направлен внутрь поверхности, поток линий индукции будет отрицательным, т.к и .Таким образом общий поток линий индукции пронизывающих замкнутую поверхность насквозь равен нулю.

На основании теоремы Гаусса получаем, что внутри замкнутой поверхности, проведенной в проводнике, некомпенсированные электрические заряды отсутствуют. Это свойство сохраняется и в том случае, когда проводнику сообщен избыточный заряд

На противоположной стороне возникнет равный по величине, но положительный заряд. В результате внутри проводника возникнет индуцированное электрическое поле Е инд , направленное навстречу внешнему полю, которое будет расти до тех пор, пока оно не сравняется с внешним полем и таким образом результирующее поле внутри проводника становится равно нулю. Этот процесс происходит в течение очень короткого времени.

Индуцированные заряды располагаются на поверхности проводника в очень тонком слое.

Потенциал во всех точках проводника остается одинаков, т.е. внешняя поверхность проводника является эквипотенциальной.

Замкнутый полый проводник экранирует только поле внешних зарядов. Если электрические заряды находятся внутри полости, то индукционные заряды возникнут не только на внешней поверхности проводника, но и на внутренней и замкнутая проводящая полость уже не экранирует поле электрических зарядов помещенных внутрь ее.

. Напряженность поля вблизи проводника прямо пропорциональна поверхностной плотности заряда на нем.