Скелетные мышцы. Строение скелетной мышечной ткани. Регенерация скелетной мышечной ткани Из какой ткани состоят скелетные мышцы

У позвоночных животных и человека различают три разных по строению группы мышц :

  • поперечно-полосатые мышцы скелета;
  • поперечно-полосатая мышца сердца;
  • гладкие мышцы внутренних органов, сосудов и кожи.

Рис. 1. Виды мышц человека

Гладкие мышцы

Из двух видов мышечной ткани (поперечно-полосатой и гладкой) гладкая мышечная ткань находится на более низкой ступени развития и присуща низшим животным.

Образуют мышечный слой стенок желудка, кишечника, мочеточников, бронхов, кровеносных сосудов и других полых органов. Они состоят из веретенообразных мышечных волокон и не имеют поперечной исчерченности, так как миофибриллы в них расположены менее упорядоченно. В гладких мышцах отдельные клетки соединяются между собой специальными участками наружных мембран - нексусами . За счет этих контактов потенциалы действия распространяются с одного мышечного волокна на другое. Поэтому в реакцию возбуждения быстро вовлекается вся мышца.

Гладкие мышцы осуществляют движения внутренних органов, кровеносных и лимфатических сосудов. В стенках внутренних органов они, как правило, располагаются в виде двух слоев: внутреннего кольцевого и наружного продольного. В стенках артерии они формируют спиралевидные структуры.

Характерной особенностью гладких мышц является их способность к спонтанной автоматической деятельности (мышцы желудка, кишечника, желчного пузыря, мочеточников). Это свойство регулируется нервными окончаниями. Гладкие мышцы пластичны, т.е. способны сохранять приданную растяжением длину без изменения напряжения. Скелетная мышца, наоборот, обладает малой пластичностью и эту разницу легко установить в следующем опыте: если растянуть с помощью грузов и гладкую и поперечно-полосатую мышцы и снять груз, то скелетная мышца сразу же после этого укорачивается до первоначальной длины, а гладкая мышца долгое время может находиться в растянутом состоянии.

Такое свойство гладких мышц имеет большое значение для функционирования внутренних органов. Именно пластичность гладких мышц обеспечивает лишь небольшое изменение давления внутри мочевого пузыря при его наполнении.

Рис. 2. А. Волокно скелетной мышцы, клетка сердечной мышцы, гладкая мышечная клетка. Б. Саркомер скелетной мышцы. В. Строение гладкой мышцы. Г. Механограмма скелетной мышцы и мышцы сердца.

Гладким мышцам присущи те же основные свойства, что и поперечнополосатым скелетным мышцам, но и некоторые особые свойства:

  • автоматия, т.е. способность сокращаться и расслабляться без внешних раздражений, а за счет возбуждений, возникающих в них самих;
  • высокая чувствительность к химическим раздражителям;
  • выраженная пластичность;
  • сокращение в ответ на быстрое растяжение.

Сокращение и расслабление гладких мышц происходит медленно. Это способствует наступлению перестальтических и маятникообразных движений органов пищеварительного тракта, что приводит к перемещению пищевого комка. Длительное сокращение гладких мышц необходимо в сфинктерах полых органов и препятствует выходу содержимого: желчи в желчном пузыре, мочи в мочевом пузыре. Сокращение гладкомышечных волокон совершается независимо от нашего желания, под воздействием внутренних, не подчиненных сознанию причин.

Поперечно-полосатые мышцы

Поперечно-полосатые мышцы располагаются на костях скелета и сокращением приводят в движение отдельные суставы и все тело. образуют тело, или сому, поэтому их еще называют соматическими, а иннервирующую их систему — соматической нервной системой.

Благодаря деятельности скелетной мускулатуры осуществляется передвижение тела в пространстве, разнообразная работа конечностей, расширение грудной клетки при дыхании, движение головы и позвоночника, жевание, мимика лица. Насчитывается более 400 мышц. Общая масса мышц составляет 40% веса. Обычно средняя часть мышцы состоит из мышечной ткани и образует брюшко. Концы мышц — сухожилия построены из плотной соединительной ткани; они соединяются с костями при помощи надкостницы, но могут прикрепляться и к другой мышце, и к соединительному слою кожи. В мышце мышечные и сухожильные волокна объединяются в пучки при помощи рыхлой соединительной ткани. Между пучками располагаются нервы и кровеносные сосуды. пропорциональна количеству волокон, составляющих брюшко мышцы.

Рис. 3. Функции мышечной ткани

Некоторые мышцы проходят только через один сустав и при сокращении приводят его в движение — односуставные мышцы. Другие мышцы проходят через два или несколько суставов — многосуставные, они производят движение в нескольких суставах.

При концы мышцы, прикрепленные к костям, приближаются друг к другу, а размеры мышцы (длина) уменьшается. Кости, соединенные суставами, действуют как рычаги.

Изменяя положение костных рычагов, мышцы действуют на суставы. При этом каждая мышца влияет на сустав только в одном направлении. У одноосного сустава (цилиндрический, блоковидный) имеются две действующие на него мышцы или группы мышц, являющиеся антагонистами: одна мышца — сгибатель, другая — разгибатель. В то же время на каждый сустав в одном направлении действует, как правило, две мышцы и более, являющиеся синергистами (синергизм — совместное действие).

У двуосного сустава (эллипсоидный, мышелковый, седловидный) мышцы группируются соответственно двум его осям, вокруг которых совершаются движения. К шаровидному суставу, имеющему три оси движения (многоосный сустав), мышцы прилежат со всех сторон. Так, например, в плечевом суставе имеются мышцы-сгибатели и разгибатели (движения вокруг фронтальной оси), отводящие и приводящие (сагиттальная ось) и вращатели вокруг продольной оси, кнутри и кнаружи. Различают три вида работы мышц: преодолевающую, уступающую и удерживающую.

Если благодаря сокращению мышцы меняется положение части тела, то преодолевается сила сопротивления, т.е. выполняется преодолевающая работа. Работа, при которой сила мышцы уступает действию силы тяжести и удерживаемого груза, называется уступающей. В этом случае мышца функционирует, однако она не укорачивается, а удлиняется, например, когда невозможно поднять или удержать на весу тело, имеющее большую массу. При большом усилии мышц приходится опустить это тело на какую-нибудь поверхность.

Удерживающая работа выполняется благодаря сокращению мышц, тело или груз удерживается в определенном положении без перемещения в пространстве, например человек держит груз, не двигаясь. При этом мышцы сокращаются без изменения длины. Сила сокращения мышц уравновешивает массу тела и груза.

Когда мышца, сокращаясь, перемешает тело или его части в пространстве, они выполняют преодолевающую или уступающую работу, которая является динамической. Статистической является удерживающая работа, при которой не происходит движений всего тела или его части. Режим, при котором мышца может свободно укорачиваться, называется изотоническим (не происходит изменения напряжения мышцы и меняется только ее длина). Режим, при котором мышца не может укоротиться, называется изометрическим — меняется только напряжение мышечных волокон.

Рис. 4. Мышцы человека

Строение поперечно-полосатых мышц

Скелетные мышцы состоят из большого числа мышечных волокон, которые объединяются в мышечные пучки.

В одном пучке содержится 20-60 волокон. Мышечные волокна представляют собой клетки цилиндрической формы длиной 10-12 см и диаметром 10-100 мкм.

Каждое мышечное волокно имеет оболочку (сарколемму) и цитоплазму (саркоплазму). В саркоплазме находятся все компоненты животной клетки и вдоль оси мышечного волокна располагаются тонкие нити - миофибриллы, Каждая миофибрилла состоит из протофибрилл, в состав которых вкючены нити белков миозина и актина, являющихся сократительным аппаратом мышечного волокна. Миофибриллы разделены между собой перегородками, которые называются Z-мембранами, на участки - саркомеры. На обоих концах саркомеров к Z-мембране прикреплены тонкие актиновые нити, а в середине расположены толстые миозиновые нити. Нити актина своими концами частично входят между миозиновыми нитями. В световом микроскопе нити миозина выглядят в виде светлой полоски в темном диске. При электронной микроскопии скелетные мышцы выглядят исчерченными (поперечно-полосатыми).

Рис. 5. Поперечные мостики: Ак — актин; Мз — миозин; Гл — головка; Ш — шейка

На боковых сторонах миозиновой нити имеются выступы, получившие название поперечных мостиков (рис. 5), которые расположены под углом 120° по отношению к оси миозиновой нити. Актиновые филаменты выглядят в виде двойной нити, закрученной в двойную спираль. В продольных бороздках актиновой спирали находятся нити белка тропомиозина, к которым присоединен белок тропонин. В состоянии покоя молекулы белка тропомиозина расположены таким образом, чтобы предотвращать прикрепление поперечных мостиков миозина к актиновым нитям.

Рис. 6. А — организация цилиндрических волокон в скелетной мышце, прикрепленной к костям сухожилиями. Б — структурная организация филаментов в волокне скелетной мышцы, создающая картину поперечных полос.

Рис. 7. Строение актина и миозина

Во многих местах поверхностная мембрана углубляется в виде микротрубок внутрь волокна, перпендикулярно его продольной оси, образуя систему поперечных трубочек (Т-система). Параллельно миофибриллам и перпендикулярно поперечным трубочкам между миофибрилл расположена система продольных трубочек (саркоплазматический ретикулум). Концевые расширения этих трубочек - терминальные цистерны - подходят очень близко к поперечным трубочкам, образуя совместно с ними так называемые триады. В цистернах сосредоточено основное количество внутриклеточного кальция.

Механизм сокращения скелетной мышцы

Мышечная ткань состоит из клеток, называемых мышечными волокнами. Снаружи волокно окружено оболочкой — сарколеммой. Внутри сарколеммы содержится цитоплазма (саркоплазма), содержащая ядра и митохондрии. В ней содержится огромное количество сократительных элементов, называемых миофибриллами. Миофибриллы проходят от одного конца мышечного волокна до другого. Они существуют сравнительно короткий срок — около 30 суток, после чего и происходит их полная смена. В мышцах идет интенсивный синтез белка, необходимый для образования новых миофибрилл.

Мышечное волокно содержит большое количество ядер, которые располагаются непосредственно под сарколеммой, поскольку основная часть мышечного волокна занята миофибриллами. Именно наличие большого числа ядер обеспечивает синтез новых миофибрилл. Такая быстрая смена миофибрилл обеспечивает высокую надежность физиологических функций мышечной ткани.

Рис. 7. А — схема организации саркоплазматического ретикулума, поперечных трубочек и миофибрилл. Б — схема анатомической структуры поперечных трубочек и саркоплазматического ретикулума в индивидуальном волокне скелетной мышцы. В — роль саркоплазматического ретикулума в механизме сокращения скелетной мышцы

Каждая миофибрилла состоит из правильно чередующихся светлых и темных участков. Эти участки, обладая разными оптическими свойствами, создают поперечную исчерченность мышечной ткани.

В скелетной мышце сокращение вызывается поступлением к ней импульса по нерву. Передача нервного импульса с нерва на мышцу осуществляется через нервно-мышечный синапс (контакт).

Одиночный нервный импульс, или однократное раздражение, приводит к элементарному сократительному акту — одиночному сокращению. Начало сокращения не совпадает с моментом нанесения раздражения, поскольку существует скрытый, или латентный, период (интервал между нанесением раздражения и началом сокращения мышцы). В этот период происходит развитие потенциала действия, активация ферментных процессов и распад АТФ. После этого начинается сокращение. Распад АТФ в мышце приводит к превращению химической энергии в механическую. Энергетические процессы всегда сопровождаются выделением тепла и тепловая энергия обычно является промежуточной между химической и механическими энергиями. В мышце же химическая энергия превращается непосредственно в механическую. Но тепло в мышце образуется и за счет укорочения мышцы, и во время ее расслабления. Тепло, образующееся в мышцах, играет большую роль в поддержании температуры тела.

В отличие от сердечной мышцы, которая обладает свойством автоматики, т.е. она способна сокращаться под влиянием импульсов, возникающих в ней самой, и в отличие от гладкой мускулатуры, также способной к сокращению без поступления сигналов извне, скелетная мышца сокращается только при поступлении к ней сигналов из . Непосредственно сигналы к мышечным волокнам поступают по аксонам двигательных клеток, расположенным в передних рогах серого вещества спинного мозга (мотонейронам).

Рефлекторный характер деятельности мышц и координация мышечных сокращений

Скелетные мышцы в отличие от гладких способны совершать произвольные быстрые сокращения и производить этим значительную работу. Рабочим элементом мышцы является мышечное волокно. Типичное мышечное волокно представляет собой структуры с несколькими ядрами, отодвинутыми на периферию массой сократительных миофибрилл.

Мышечные волокна обладают тремя основными свойствами:

  • возбудимостью — способностью отвечать на действия раздражителя генерацией потенциала действия;
  • проводимостью — способностью проводить волну возбуждения вдоль всего волокна в обе стороны от точки раздражения;
  • сократимостью — способностью сокращаться или изменять напряжение при возбуждении.

В физиологии имеется понятие двигательной единицы, под которой подразумевается один двигательный нейрон и все мышечные волокна, которые этот нейрон иннервирует. Двигательные единицы бывают разными по объему: от 10 мышечных волокон на единицу для мышц, выполняющих точные движения, до 1000 и более волокон на двигательную единицу для мышц «силовой направленности». Характер работы скелетных мышц может быть различным: статическая работа (поддержание позы, удержание груза) и динамическая работа (перемещение тела или груза в пространстве). Мышцы участвуют также в передвижении крови и лимфы в организме, выработке тепла, актах вдоха и выдоха, являются своеобразными депо для воды и солей, защищают внутренние органы, например мышцы брюшной стенки.

Для скелетной мышцы характерны два основных режима сокращения — изометрический и изотонический.

Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, при попытке поднять очень большой груз), — она не укорачивается.

Изотонический режим проявляется в том, что мышца первоначально развивает напряжение (силу), способное поднять данный груз, а потом мышца укорачивается — меняет свою длину, сохраняя напряжение, равное весу удерживаемого груза. Чисто изометрического или изотонического сокращения практически наблюдать нельзя, но существуют приемы так называемой изометрической гимнастики, когда спортсмен напрягает мышцы без изменения длины. Эти упражнения в большей мере развивают силу мышц, чем упражнения с изотоническими элементами.

Сократительный аппарат скелетной мышцы представлен миофибриллами. Каждая миофибрилла диаметром 1 мкм состоит из нескольких тысяч протофибрилл — тонких, удлиненных полимеризированных молекул белков миозина и актина. Миозиновые нити в два раза тоньше актиновых, и в состоянии покоя мышечного волокна актиновые нити свободными кольцами входят между миозиновыми нитями.

В передаче возбуждения большую роль играют ионы кальция, которые входят в межфибриллярное пространство и запускают механизм сокращения: взаимное втягивание относительно друг друга актиновых и миозиновых нитей. Втягивание нитей происходит при обязательном участии АТФ. В активных центрах, расположенных на одном из концов миозиновых нитей, АТФ расщепляется. Энергия, выделяемая при расщеплении АТФ, преобразуется в движение. В скелетных мышцах запас АТФ невелик — всего на 10 одиночных сокращений. Поэтому необходим постоянный ре- синтез АТФ, который идет тремя путями: первый — за счет запасов креатинфосфата, которые ограничены; второй — гликолитический путь при анаэробном расщеплении глюкозы, когда на одну молекулу глюкозы образуется две молекулы АТФ, но одновременно образуется молочная кислота, которая тормозит активность гликолитических ферментов, и наконец третий — аэробное окисление глюкозы и жирных кислот в цикле Кребса, совершающееся в митохондриях и образующее 38 молекул АТФ на 1 молекулу глюкозы. Последний процесс наиболее экономичный, но очень медленный. Постоянная тренировка активизирует третий путь окисления, в результате чего повышается выносливость мышц к длительным нагрузкам.

Профессор Суворова Г.Н.

Мышечные ткани.

Представляют собой группу тканей, которые осуществляют двигательные функции организма:

1) сократительные процессы в полых внутренних органах и сосудах

2) перемещение частей тела относительно друг друга

3) поддержание позы

4) перемещение организма в пространстве.

Мышечные ткани имеют следующие морфофункциональные характеристики:

1) Их структурные элементы имеют удлиненную форму.

2) Сократимые структуры (миофиламенты и миофибриллы) располагаются продольно.

3) Для мышечного сокращения необходимо большое количество энергии, поэтому в них:

Содержится большое число митохондрий

Имеются трофические включения

Может присутствовать железосодержащий белок миоглобин

Хорошо развиты структуры, в которых депонируются ионы Са ++

Мышечная ткань подразделяется на две основные группы

1) гладкую (неисчерченную)

2) Поперечнополосатую (исчерченную)

Гладкая мышечная ткань: имеет мезенхимное происхождение.

Кроме того, выделяют группу миоидных клеток, к ним относятся

Миоидные клетки, имеющие нейральное происхождение (образует мышцы радужки)

Миоидные клетки, имеющие эпидермальное происхождение (миоэпителиальные клетки потовых, слюнных, слезных и молочных желез)

Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей:

Скелетная – из миотомов сомитов

Сердечная – из висцерального листка спланхнотома.

Скелетная мышечная ткань

Составляет около 35-40% массы тела человека. В качестве основного компонента входит в состав скелетных мышц, кроме того, образует мышечную основу языка, входит в состав мышечной оболочки пищевода и т.д.

Развитие скелетных мышц . Источник развития – клетки миотомов сомитьов мезодермы, детерминированные в направлении миогенеза. Стадии:

Миобласты

Мышечные трубочки

Дефинитивная форма миогенеза – мышечное волокно.

Строение скелетной мышечной ткани.

Структурно-функциональной единицей скелетной мышечной ткани является мышечное волокно. Оно представляет собой вытянутое цилиндрическое образование с заостренными концами, диаметром от 10 до 100 мкм, вариабельной длины (до 10-30 см.).

Мышечное волокно является комплексным (клеточно-симпластическим) образованием, которое состоит их двух основных компонентов

1. миосимпласта

2. миосателлитоцитов.

Снаружи мышечное волокно покрыто базальной мембраной, которая вместе с плазмолеммой миосимпласта образует так называемую сарколемму.

Миосимпласт является основным компонентом мышечного волокна как по объему, так и по выполняемой функции. Миосимпласт является гигантской надклеточной структурой, которая образуется путем слияния огромного числа миобластов в эмбриогенезе. На периферии миосимпласта располагается от нескольких сотен до нескольких тысяч ядер. Вблизи ядер локализуются фрагменты пластинчатого комплекса, ЭПС, единичные митохондрии.


Центральная часть миосимпласта заполнена саркоплазмой. Саркоплазма содержит все органеллы общего значения, а также специализированные аппараты. К ним относятся:

Сократительный

Аппарат передачи возбуждения с сарколеммы

на сократительный аппарат.

Энергетический

Опорный

Сократительный аппарат мышечного волокна представлен миофибриллами.

Миофибриллы имеют вид нитей (длина мышечного волокна) диаметром 1-2 мкм. Они обладают поперечной исчерченностью, обусловленной чередованием различно преломляющих поляризованный свет участков (дисков) – изотропных (светлых) и анизотропных (темных). Причем миофибриллы располагаются в мышечном волокне с такой степенью упорядоченности, что светлые и темные диски соседних миофибрилл точно совпадают. Это и обусловливает исчерченность всего волокна.

Темные и светлые диски в свою очередь состоят из толстых и тонких нитей, которые называются миофиламентами.

Посередине светлого диска, поперечно тонким миофиламентам проходит темная полоска – телофрагма, или Z-линия.

Участок миофибриллы, расположенный между двумя телофрагмами называют саркомером.

Саркомер считается структурно-функциональной единицей миофибриллы - он включает в себя А-диск и расположенные по обе стороны от него две половины I-диска.

Толстые нити (миофиламенты) образованы упорядоченно упакованными молекулами фибриллярного белка миозина. Каждая толстая нить состоит из 300-400 молекул миозина.

Тонкие нити содержат сократимый белок актин и два регуляторных белка: тропонин и тропомиозин.

Механизм мышечного сокращения описывается теорией скользящих нитей, которая была предложена Хью Хаксли.

В покое, при очень низкой концентрации ионов Са ++ в миофибрилле расслабленного волокна толстые и тонкие нити не соприкасаются. Толстые и тонкие филаменты беспрепятственно скользят относительно друг друга, в результате мышечные волокна не сопротивляются пассивному растяжению. Такое состояние свойственно мышце-разгибателю при сокращении соответствующего сгибателя.

Мышечное сокращение вызывается резким повышением концентрации ионов Са ++ и состоит из нескольких этапов:

Ионы Са ++ связыватся с молекулой тропонина, которая смещается, открывая на тонких нитях участки связывания миозина.

Головка миозина прикрепляется к миозин-связывающим участкам тонкой нити.

Головка миозина изменяет конформацию и совершает гребковое движение, продвигающее тонкую нить к центру саркомера.

Головка миозина связывается с молекулой АТФ, что приводит к отделению миозина от актина.

Саркотубулярная система – обеспечивает накопление ионов кальция и является аппаратом передачи возбуждения. Необходима для того волна деполяризации, проходящая по плазмолемме привела к эффективному сокращению миофибрилл. Она состоит из саркоплазматической сети и Т-трубочек.

Саркоплазматическая сеть представляет собой видоизмененую гладкую эндоплазматическую сеть и состоит из системы полостей и канальцев, которая в виде муфты окружает каждую миофибриллу. На границе А- и I-дисков трубочки сливаются, образуя пары плоских терминальных цистерн. Саркоплазматическая сеть выполняет функции депонирования и выделения ионов кальция.

Волна деполяризации, распространяемая по плазмолемме доходит вначале до Т-трубочек. Между стенкой Т-трубочки и терминальной цистерны имеются специализированные контакты, через которые волна деполяризации доходит до мембраны терминальных цистерн, после чего высвобождаются ионы кальция.

Опорный аппарат мышечного волокна представлен элементами цитоскелета, которые обеспечивают упорядоченное расположение миофиламентов и миофибрилл. К ним относятся:

Телофрагма (Z-линия) – область прикрепления тонких миофиламентов двух соседних саркомеров.

Мезофрагма (М-линия) – плотная линия, расположенная в центре А-диска, к ней прикрепляются толстые филаменты.

Кроме того, в составе мышечного волокна имеются белки, стабилизирующие его структуру, например:

Дистрофин – одним концом прикрепляется к актиновым филаментам, а другим – к комплеку гликопротеидов, которые проникают в сарколемму.

Титин – эластический белок, который тянется от М- к Z-линии, препятствует перерастяжению мышцы.

Кроме миосимпласта в состав мышечных волокон входят миосателлитоциты. Это мелкие клетки, которые располагаются между плазмолеммой и базальной мембраной, представляют собой камбиальные элементы скелетной мышечной ткани. Они активизируются при повреждении мышечных волокон и обеспечивают их репаративную регенерацию.

Различают три основных типа волокон:

Тип I (красные)

Тип IIВ (белые)

Тип IIА (промежуточные)

Волокна I типа – красные мышечные волокна, характеризуются высоким содержанием в цитоплазме миоглобина, который и придает им красный цвет, большим числом саркосом, высокой активностью окислительных ферментов(СДГ), пребладанием аэробных процессов.Эти волокна обладают способностью медленного,но длительного тонического сокращения и малой утомляемостью.

Волокна IIВ типа – белые - гликолитические, характеризуютс относительно низким содержанием миоглобина, но высоким –гликогена. Имеют больший диаметр, быстрые, тетанические, с большой силой сокращения, быстро утомляются.

Волокна IIА типа – промежуточные, быстрые, устойчивые к утомлению, окислительно-гликолитические.

Мышца как орган – состоит из мышечных волокон, связанных воедино системой соединительной ткани, сосудов и нервов.

Каждое волокно окружено прослойкой рыхлой соединительной ткани, которая содержит кровеносные и лимфатические капилляры, обеспечивающие трофику волокна. Коллагеновые и ретикулярные волокна эндомизия вплетаются в базальную мембрану волокон.

Перимизий – окружает пучки мышечных волокон. В нем содержатся более крупные сосуды

Эпимизий – фасция. Тонкий соединительно-тканный чехол из плотной соединительной ткани, окружающий всю мышцу.

Тема 15. МЫШЕЧНЫЕ ТКАНИ. СКЕЛЕТНАЯ МЫШЕЧНАЯ ТКАНЬ

Свойством сократимости обладают практически все виды клеток благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5 – 7 нм), состоящих из сократительных белков актина, миозина, тропомиозина. За счет взаимодействия названных белков-микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго– и пиноцитоза, экзоцитоза, деления и перемещения клеток. Содержание сократительных элементов (а следовательно, и сократительные процессы) неодинаково выражены в различных типах клеток. Наиболее выражены сократительные структуры в клетках, основной функцией которых является сокращение. Такие клетки или их производные образуют мышечные ткани, которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Помимо движения, при сокращении выделяется большое количество тепла, а следовательно, мышечные ткани участвуют в терморегуляции организма.

Мышечные ткани неодинаковы по строению, источникам происхождения и иннервации, функциональным особенностям.

Любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон), включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику и осуществляют передачу усилий сокращения мышечных элементов.

Мышечная ткань подразделяется по строению на гладкую (неисчерченную) и поперечно-полосатую (исчерченную). Каждая из двух групп, в свою очередь, подразделяется на виды по источникам происхождения, строению и функциональным особенностям.

Гладкая мышечная ткань, входящая в состав внутренних органов и сосудов, развивается из мезенхимы. К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения – миоэпителиальные клетки слюнных, слезных, потовых и молочных желез.

Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей: скелетная – из миотомов сомитов, сердечная – из висцеральных листков спланхиотом.

Поперечно-полосатая скелетная мышечная ткань

Как уже отмечалось, структурно-функциональной единицей этой ткани является мышечное волокно . Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 до 40 мм (а по некоторым данным – до 120 мм), диаметром 0,1 мм. Мышечное волокно окружено оболочкой сарколеммой, в которой под электронным микроскопом отчетливо выделяются два листка: внутренний листок является типичной плазмолеммой, а наружный представляет собой тонкую соединительно-тканную пластинку (базальную пластинку).

Основным структурным компонентом мышечного волокна является миосимпласт. Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов:

1) миосимпласта;

2) клеток-миосателлитов;

3) базальной пластинки.

Базальная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительно-тканные элементы мышцы.

Клетки-миосателлиты являются ростковыми элементами мышечных волокон, играющими важную роль в процессах физиологической и репаративной регенерации.

Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток – миобластов.

Миосимпласт можно рассматривать как вытянутую гигантскую многоядерную клетку, состоящую из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специализированных органелл.

В миосимпласте до 10 тыс. продольно вытянутых светлых ядер, располагающихся на периферии под плазмолеммой. Вблизи ядер локализуются фрагменты слабо выраженной зернистой эндоплазматической сети, пластинчатого комплекса Гольджи и небольшое количество митохондрий. Центриоли в симпласте отсутствуют. В саркоплазме имеются включения гликогена и миоглобина.

Отличительной особенностью миосимпласта является также наличие в нем:

1) миофибрилл;

2) саркоплазматической сети;

3) канальцев Т-системы.

Миофибриллы – сократительные элементы миосимпласта локализуются в центральной части саркоплазмы миосимпласта.

Они объединяются в пучки, между которыми располагаются прослойки саркоплазмы. Между миофибриллами локализуется большое количество митохондрий (сакросом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибриллы составляет 0,2 – 0,5 мкм.

По своему строению миофибриллы неоднородны по протяжению, подразделяются на темные (анизотропные), или А-диски, и светлые (изотропные), или I-диски. Темные и светлые диски всех миофибрилл располагаются на одном уровне и обусловливают поперечную исчерченность всего мышечного волокна. Диски в свою очередь, состоят из более тонких волоконцев – протофибрилл, или миофиламентов. Темные диски состоят из миозина, светлые – из актина.

Посередине I-диска поперечно актиновым микрофиламентам, проходит темная полоска – телофрагма (или Z-линия), посередине А-диска проходит менее выраженная мезофрагма, (или М-линия).

Актиновые миофиламенты посредине I-диска скрепляются белками, составляющими Z-линию, а свободными концами частично входят в А-диск между толстыми миофиламентами.

При этом вокруг одного миозинового филамента располагаются шесть актиновых. При частичном сокращении миофибриллы актиновые филаменты как бы втягиваются в А-диск, и в нем образуется светлая зона (или Н-полоска), ограниченная свободными концами микрофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.

Участок миофибриллы, расположенный между двумя Z-полосками, носит название саркомера и является структурно-функциональной единицей миофибриллы. Саркомер включает в себя А-диск и расположенные по сторонам от него две половины I-диска. Следовательно, каждая миофибрилла представляет собой совокупность саркомеров. Именно в саркомере осуществляются процессы сокращения. Следует отметить, что конечные саркомеры каждой миофибриллы прикрепляются к плазмолемме миосимпласта при помощи актиновых миофиламентов.

Структурные элементы саркомера в расслабленном состоянии можно выразить формулой:

Z + 1/2I = 1/2А + Ь + 1/2А + 1/2I + Z.

Процесс сокращения осуществляется при взаимодействии актиновых и миозиновых филаментов с образованием между ними актомиозиновых «мостиков», посредством которых происходит втягивание актиновых филаментов в А-диск и укорочение саркомера.

Для развития этого процесса необходимы три условия:

1) наличие энергии в форме АТФ;

2) наличие ионов кальция;

3) наличие биопотенциала.

АТФ образуется в саркосомах (митохондриях), в большом количестве локализованных между миофибриллами. Выполнение второго и третьего условия осуществляется при помощи специальных органелл мышечной ткани – саркоплазматической сети (аналога эндоплазматической сети обычных клеток) и системы Т-канальцев.

Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы.

При этом саркоплазматическая сеть подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из двух терминальных цистерн, соединенных полыми анастомозирующими канальцами – L-канальцами. При этом терминальные цистерны охватывают саркомер в области I-диска, а канальцы – в области А-диска. В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети выходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми микрофиламентами, инициируя их взаимодействие.

После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальца.

Таким образом, саркоплазматическая сеть является не только резервуаром для ионов кальция, но и играет роль кальциевого насоса.

Волна деполяризации передается на саркоплазматическую сеть от нервного окончания вначале по плазмолемме, а затем по Т-канальцам, которые не являются самостоятельными структурными элементами. Они представляют собой трубчатые впячивания плазмолеммы в саркоплазму. Проникая вглубь, Т-канальцы разветвляются и охватывают каждую миофибриллу в пределах одного пучка строго на определенном уровне, обычно на уровне Z-полоски или несколько медиальнее – в области соединения актиновых и миозиновых филаментов. Следовательно, к каждому саркомеру подходят и окружают его два Т-канальца. По сторонам от каждого Т-канальца располагаются две терминальные цистерны саркоплазматической сети соседних саркомеров, которые вместе с Т-канальцами составляют триаду. Между стенкой Т-канальца и стенками терминальных цистерн имеются контакты, через которые волна деполяризации передается на мембраны цистерн и обусловливает выход из них ионов кальция и начало сокращения.

Таким образом, функциональная роль Т-канальцев заключается в передаче возбуждения с плазмолеммы на саркоплазматическую сеть.

Для взаимодействия актиновых и миозиновых филаментов и последующего сокращения, кроме ионов кальция, необходима также энергия в виде АТФ, которая вырабатывается в саркосомах, в большом количестве располагающихся между миофибриллами.

Под влиянием ионов кальция стимулируется АТФ-азная активность миозина, что приводит к расщеплению АТФ с образованием АДФ и выделением энергии. Благодаря выделившейся энергии устанавливаются «мостики» между головками белка миозина и определенными точками на белке актине, и за счет укорочения этих «мостиков» происходит подтягивание актиновых филаментов между миозиновыми.

Затем эти связи распадаются, с использованием энергии АТФ и головки миозина образуются новые контакты с другими точками на актиновом филаменте, но расположенными дистальнее предыдущих. Так происходит постепенное втягивание актиновых филаментов между миозиновыми и укорочение саркомера. Степень этого сокращения зависит от концентрации свободных ионов кальция вблизи миофиламентов и от содержания АТФ.

При полном сокращении саркомера актиновые филаменты достигают М-полоски саркомера. При этом исчезают Н-полоска и I-диски, а формула саркомера может быть выражена следующим образом:

Z + 1/2IA + M + 1/2AI + Z.

При частичном сокращении формула саркомера будет выглядеть так:

Z + 1/nI + 1/nIA + 1/2H + M + 1/2H + 1/nAI + 1/nI + Z.

Одновременное и содружественное сокращение всех саркомеров каждой миофибриллы приводит к сокращению всего мышечного волокна. Крайние саркомеры каждой миофибриллы прикрепляются актиновыми миофиламентами к плазмолемме миосимпласта, которая на концах мышечного волокна имеет складчатый характер. При этом на концах мышечного волокна базальная пластинка не заходит в складки плазмолеммы. Ее прободают тонкие коллагеновые и ретикулярные волокна, проникают в глубь складок плазмолеммы и прикрепляются в тех ее местах, к которым с внутренней стороны прикрепляются актиновые филаменты дистальных саркомеров.

Благодаря этому создается прочная связь миосимпласта с волокнистыми структурами эндомизия. Коллагеновые и ретикулярные волокна концевых отделов мышечных волокон вместе с волокнистыми структурами эндомизия и перимизия в совокупности образуют сухожилия мышц, которые прикрепляются к определенным точкам скелета или вплетаются в сетчатый слой дермы кожи в области лица. Благодаря сокращению мышц происходит перемещение частей или всего организма, а также изменение рельефа лица.

Не все мышечные волокна одинаковы по своему строению. Различают два основных типа мышечных волокон, между которыми имеется промежуточные, отличающиеся между собой прежде всего особенностями обменных процессов и функциональными свойствами и в меньшей степени – структурными особенностями.

Волокна I типа – красные мышечные волокна, характеризуются прежде всего высоким содержанием в саркоплазме миоглобина (что придает им красный цвет), большим количеством саркосом, высокой активностью в них фермента сукцинатдегидрогеназы, высокой активностью АТФ-азы медленного действия. Эти волокна обладают способностью медленного, но длительного тонического сокращения и малой утомляемостью.

Волокна II типа – белые мышечные волокна, характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-азы быстрого типа. Функционально волокна данного типа характеризуются способностью более быстрого, сильного, но менее продолжительного сокращения.

Между двумя крайними типами мышечных волокон находятся промежуточные, характеризующиеся различным сочетанием названных включений и разной активностью перечисленных ферментов.

Любая мышца содержит все типы мышечных волокон в различном их количественном соотношении. В мышцах, обеспечивающих поддержание позы, преобладают красные мышечные волокна, в мышцах, обеспечивающих движение пальцев и кистей, преобладают красные и переходные волокна. Характер мышечного волокна может меняться в зависимости от функциональной нагрузки и тренировки. Установлено, что биохимические, структурные и функциональные особенности мышечного волокна зависят от иннервации.

Перекрестная пересадка эфферентных нервных волокон и их окончаний с красного волокна на белое (и наоборот) приводит к изменению обмена, а также структурных и функциональных особенностей в этих волокнах на противоположный тип.

Строение и физиология мышцы

Мышца как орган состоит из мышечных волокон, волокнистой соединительной ткани, сосудов, нервов. Мышца – это анатомическое образование, основным и функционально ведущим структурным компонентом которого является мышечная ткань.

Волокнистая соединительная ткань образует прослойки в мышце: эндомизий, перимизий, эпимизий, а также сухожилия.

Эндомизий окружает каждое мышечное волокно, состоит из рыхлой волокнистой соединительной ткани и содержит кровеносные и лимфатические сосуды, в основном капилляры, посредством которых обеспечивается трофика волокна.

Перимизий окружает несколько мышечных волокон, собранных в пучки.

Эпимизий (или фасция) окружает всю мышцу, способствует функционированию мышцы как органа.

Гистогенез скелетной поперечно-полосатой мышечной ткани

Из миотомов мезодермы в определенные участки мезенхимы выселяются малодифференцированные клетки – миобласты. В области контактов миобластов цитолемма исчезает, и образуется симпластическое образование – миотрубка, в которой ядра в виде цепочки располагаются в середине, а по периферии из миофиламентов начинают дифференцироваться миофибриллы.

К миотрубке подрастают нервные волокна, образуя двигательные нервные окончания. Под влиянием эфферентной нервной иннервации начинается перестройка мышечной трубки в мышечное волокно: ядра перемещаются на периферию симпласта к плазмолемме, а миофибриллы занимают центральную часть. Из складок эндоплазматической сети развивается саркоплазматическая сеть, окружающая каждую миофибриллу на всем ее протяжении. Плазмолемма миосимпласта образует глубокие трубчатые выпячивания – Т-канальца. За счет деятельности зернистой эндоплазматической сети вначале миобластов, а затем и мышечных труб синтезируются и выделяются с помощью пластинчатого комплекса белки и полисахариды, из которых формируется базальная пластинка мышечного волокна.

При формировании миотрубки, а затем и дифференцировки мышечного волокна часть миобластов не входит в состав симпласта, а прилежит к нему, располагаясь под базальной пластинкой. Эти клетки носят название миосателлитов и играют важную роль в процессе физиологической и репаративной регенерации. Установлено, что закладка поперечно-полосатой скелетной мускулатуры происходит только в эмбриональном периоде. В постнатальном периоде осуществляется их дальнейшая дифференцировка и гипертрофия, но количество мышечных волокон даже в условиях интенсивных тренировок не увеличивается.

Регенерация скелетной мышечной ткани

В мышечной, как и в других тканях, различают два вида регенерации физиологическую и репаративную. Физиологическая регенерация проявляется в форме гипертрофии мышечных волокон.

Это выражается в увеличении их толщины и длины, нарастании числа органелл, главным образом миофибрилл, числа ядер, что проявляется усилением функциональной способности мышечного волокна. Радиоизотопными методами установлено, что увеличение содержания ядер в мышечных волокон достигается путем деления клеток миосателлитов и последующего вхождения в миосимпласт дочерних клеток.

Увеличение числа миофибрилл осуществляется с помощью синтеза актиновых и миозиновых белков свободными рибосомами и последующей сборки этих белков в актиновые и миозиновые миофиламенты параллельно с соответствующими филаментами саркомеров. В результате этого вначале происходит утолщение миофибрилл, а затем их расщепление и образование дочерних. Возможно образование новых актиновых и миозиновых миофиламентов не параллельно, а встык уже существующим, чем достигается их удлинение.

Саркоплазматическая сеть и Т-канальца в гипертрофирующемся мышечном волокне образуются за счет разрастания предыдущих элементов. При определенных видах мышечной тренировки может формироваться преимущественно красный тип мышечных волокон (у стайеров в легкой атлетике) или белый тип.

Возрастная гипертрофия мышечных волокон интенсивно проявляется с началом двигательной активности организма (1 – 2 года), что обусловлено прежде всего усилением нервной стимуляции. В старческом возраст, а также в условиях незначительной мышечной нагрузки, наступает атрофия специальных и общих органелл, истончение мышечных волокон и снижение их работоспособности.

Репаративная регенерация развивается после повреждения мышечных волокон.

При этом способе регенерация зависит от величины дефекта. При значительном повреждении на протяжении мышечного волокна миосателлиты в области повреждения и в прилегающих участках растормаживаются, усиленно пролиферируют, а затем мигрируют в область дефекта мышечного волокна, где встраиваются в цепочки, формируя микротрубочку.

Последующая дифференцировка микротрубочки приводит к восполнению дефекта и восстановлению целостности мышечного волокна. В условиях небольшого дефекта мышечного волокна на его концах за счет регенерации внутриклеточных органелл, образуются мышечные почки, которые растут друг навстречу другу, а затем сливаются, приводя к закрытию дефекта.

Репаративная регенерация и восстановление целостности мышечных волокон могут осуществляться только при определенных условиях: если сохранилась двигательная иннервация мышечных волокон и если в область повреждения не попали элементы соединительной ткани (фибробласты). В противном случае на месте дефекта образуется соединительно-тканный рубец.

В настоящее время доказана возможность аутотрансплантации мышечной ткани, в том числе и целых мышц при соблюдении следующих условий:

1) механического измельчения мышечной ткани трансплантанта с целью растормаживания клеток-сателлитов для последующей их пролиферации;

2) помещения измельченной ткани в фасциальное ложе;

3) подшивания двигательного нервного волокна к измельченному трансплантанту;

4) наличия сократительных движений мышц-антагонистов и синергистов.

Иннервация скелетных мышц

Скелетные мышцы получают двигательную, чувствительную и трофическую (вегетативную) иннервацию. Двигательную (эфферентную) иннервацию скелетные мышцы туловища и конечностей получают от мотонейронов передних рогов спинного мозга, а мышцы лица и головы – от двигательных нейронов определенных черепных нервов.

При этом к каждому мышечному волокну подходит либо сам аксон мотонейрона, либо его ответвление. В мышцах, обеспечивающих координированные движения (мышцы кистей, предплечья, шеи) каждое мышечное волокно иннервируется одним мотонейроном, чем достигается большая точность движений. В мышцах, которые преимущественно обеспечивают поддержание позы, десятки и даже сотни мышечных волокон получают двигательную иннервацию от одного мотонейрона посредством разветвления его аксона.

Двигательное нервное волокно, подойдя к мышечному волокну, проникает под эндомизий и базальную пластинку и распадается на терминали, которые вместе с прилежащим специфическим участком миосимпласта образуют аксономышечный синапс (или моторную бляшку).

Под влиянием нервного импульса волна деполяризации распространяется далее по Т-канальцам и в области триад передается на терминальные цистерны саркоплазматической сети, обуславливая выход ионов кальция и начало процесса сокращения мышечного волокна.

Чувствительная иннервация скелетных мышц осуществляется псевдоуниполярными нейронами спинальных ганглиев посредством разнообразных рецепторных окончаний дендритов этих клеток. Рецепторные окончания скелетных мышц можно разделить на две группы:

1) специфические рецепторные приборы, характерные только для скелетной мускулатуры – мышечные веретена и сухожильный комплекс Гольджи;

2) неспецифические рецепторные окончания кустиковидной или древовидной формы, распределяющиеся в рыхлой соединительной ткани эндо-, пери– и эпиневрия.

Мышечные веретена – это сложно устроенные инкапсулированные образования. В каждой мышце содержится от нескольких до сотен мышечных веретен. Каждое мышечное веретено содержит не только нервные элементы, но также 10 – 12 специфических мышечных волокон – интрафузальных, окруженных капсулой. Эти волокна располагаются параллельно сократительным мышечным волокнам (экстрафузально) и получают не только чувствительную, но и специальную двигательную иннервацию. Мышечные веретена воспринимают раздражения как при растяжении данной мышцы, вызванном сокращением мышц-антагонистов, так и при ее сокращении и тем самым регулируют степень сокращения и расслабления.

Сухожильные органы представляют собой специализированные инкапсулированные рецепторы, включающие в свою структуру несколько сухожильных волокон, окруженных капсулой, среди которых распределяются терминальные ветвления дендрита псевдоуниполярного нейрона. При сокращении мышцы сухожильные волокна сближаются и сдавливают нервные окончания. Сухожильные органы воспринимают только степень сокращения данной мышцы. Посредством мышечных веретен и сухожильных органов при участии спинальных центров обеспечивается автоматизм движения, например, при ходьбе.

Трофическая иннервация скелетных мышц осуществляется вегетативной нервной системой – ее вегетативной частью и в основном осуществляется опосредованно через иннервацию сосудов.

Кровоснабжение

Скелетные мышцы богато кровоснабжаются. В рыхлой соединительной ткани (перимизии) в большом количестве содержатся артерии и вены, артериолы, венулы и артериоловенулярные анастомозы.

В эндомизии располагаются капилляры, преимущественно узкие (4,5 – 7 мкм), которые и обеспечивают трофику нервного волокна. Мышечное волокно вместе с окружающими его капиллярами и двигательными окончаниями составляют мион. В мышцах содержится большое количество артериовенулярных анастомозов, обеспечивающих адекватное кровоснабжение при различной мышечной активности.

В теле человека различают три вида мышечной ткани: скелетная (поперечнополосатая), гладкая и мышца сердца. Здесь будут разобраны скелетные мышцы, которые формируют мускулатуру опорно-двигательного аппарата, составляют стенки нашего тела и некоторых внутренних органов (пищевода, глотки, гортани). Если всю мышечную ткань принять за 100%, то на долю скелетных мышц приходится более половины (52%), гладкая мышечная ткань составляет 40%, сердечная мышца – 8%. Масса скелетных мышц с возрастом нарастает (до зрелого возраста), а у пожилых людей мышцы атрофируются, так как имеет место функциональная зависимость массы мышц от их функции. У взрослого человека скелетные мышцы составляют 40-45% от общей массы тела, у новорожденного – 20-24%, у стариков – 20-30%, а у спортсменов (особенно представителей скоростно-силовых видов спорта) – 50% и более. Степень развития мускулатуры зависит от особенностей конституции, пола, профессии и других факторов. У спортсменов степень развития мускулатуры определяется характером двигательной деятельности. Систематические физические нагрузки приводят к структурной перестройке мышц, увеличению их массы и объема. Этот процесс перестройки мышц под влиянием физической нагрузки называют функциональной (рабочей) гипертрофией. Физические упражнения, связанные с различными видами спорта, вызывают рабочую гипертрофию тех мышц, которые оказываются наиболее нагруженными. Правильно дозированные физические упражнения вызывают пропорциональное развитие мускулатуры всего тела. Активная деятельность мышечной системы оказывает влияние не только на мышцы, она приводит также к перестройке костной ткани и соединений костей, влияет на внешние формы человеческого организма и его внутреннюю структуру.

Вместе с костями мышцы составляют опорно-двигательный аппарат. Если кости его пассивная часть, то мышцы являются активной частью аппарата движения.

Функции и свойства скелетных мышц. Благодаря мышцам возможно все многообразие движений между звеньями скелета (туловищем, головой, конечностями), перемещение тела человека в пространстве (ходьба, бег, прыжки, вращения и т. п.), фиксация частей тела в определенных положениях, в частности сохранение вертикального положения тела.

С помощью мышц осуществляются механизмы дыхания, жевания, глотания, речи, мышцы влияют на положение и функцию внутренних органов, способствуют току крови и лимфы, участвуют в обмене веществ, в частности теплообмене. Кроме того, мышцы – один из важнейших анализаторов, воспринимающих положение тела человека в пространстве и взаиморасположение его частей.

Скелетная мышца обладает следующими свойствами:

1) возбудимостью – способностью отвечать на действие раздражителя;

2) сократимостью – способностью укорачиваться или развивать напряжение при возбуждении;

3) эластичностью – способностью развивать напряжение при растягивании;

4) тонусом – в естественных условиях скелетные мышцы постоянно находятся в состоянии некоторого сокращения, называемого мышечным тонусом, который имеет рефлекторное происхождение.

Роль нервной системы в регуляции деятельности мышц. Основным свойством мышечной ткани является сократимость. Сокращение и расслабление скелетных мышц подчиняется воле человека. Сокращение мышцы вызывается импульсом, идущим из центральной нервной системы, с которой каждая мышца связана нервами, содержащими чувствительные и двигательные нейроны. По чувствительным нейронам, являющимся проводниками “мышечного чувства”, передаются импульсы от рецепторов кожи, мышц, сухожилий, суставов в центральную нервную систему. По двигательным нейронам проводятся импульсы от спинного мозга к мышце, в результате чего мышца сокращается, т.е. сокращения мышц в организме совершаются рефлекторно. В то же время на двигательные нейроны спинного мозга влияют импульсы из головного мозга, в частности из коры больших полушарий. Это делает движения произвольными. Сокращаясь, мышцы приводят в движение части тела, обусловливают перемещение организма или поддержание определенной позы. К мышцам также подходят симпатические нервы, благодаря которым мышца в живом организме всегда находится в состоянии некоторого сокращения, называемого тонусом. При выполнении спортивных движений в кору головного мозга поступает поток импульсов о месте и степени напряжения тех или иных групп мышц. Возникающее при этом ощущение частей своего тела, так называемое “мышечно-суставное чувство”, является очень важным для спортсменов.

Мышцы тела следует рассматривать с точки зрения их функции, а также топографии групп, в которые они складываются.

Мышца как орган. Строение скелетной мышцы. Каждая мышца является отдельным органом, т.е. целостным образованием, имеющим свою определенную, присущую только ему форму, строение, функцию, развитие и положение в организме. В состав мышцы как органа входят поперечнополосатая мышечная ткань, составляющая ее основу, рыхлая и плотная соединительная ткань, сосуды, нервы. Однако преобладающей в ней является мышечная ткань, основное свойство которой – сократимость.

Рис. 69. Строение мышцы :

1- мышечное брюшко; 2,3-сухожильные концы;

4-поперечно полосатое мышечное волокно.

Каждая мышца имеет среднюю часть, способную сокращаться и называемую брюшком , и сухожильные концы (сухожилия), не обладающие сократимостью и служащие для прикрепления мышц (рис. 69).

Брюшко мышцы (рис. 69-71) содержит различной толщины пучки мышечных волокон. Мышечное волокно (рис. 70, 71) представляет собой пласт цитоплазмы, содержащий ядра и покрытый оболочкой.

Рис. 70. Строение мышечного волокна.

Наряду с обычными составляющими клетки в цитоплазме мышечных волокон содержатся миоглобин , обусловливающий цвет мышц (белые или красные) и органеллы специального значения – миофибриллы (рис. 70), составляющие сократительный аппарат мышечных волокон. Миофибриллы состоят из двух видов белков – актина и миозина. Реагируя на нервный сигнал, молекулы актина и миозина вступают в реакцию, вызывая сокращение миофибрилл, а, следовательно, и мышцы. Отдельные участки миофибрилл неодинаково преломляют свет: одни из них в двух направлениях – темные диски, другие только в одном – светлые диски. Такое чередование темных и светлых участков в мышечном волокне и обусловливает поперечную исчерченность, откуда мышца и получила название – поперечнополосатая . В зависимости от преобладания в мышце волокон с высоким или низким содержанием миоглобина (красный мышечный пигмент) различают мышцы красные и белые (соответственно). Белые мышцы обладают высокой сократительной скоростью и возможностью развивать большую силу. Красные волокна сокращаются медленно и отличаются хорошей выносливостью.

Рис. 71. Строение скелетной мышцы.

Каждое мышечное волокно окутано соединительнотканной оболочкой – эндомизием , содержащей сосуды и нервы. Группы мышечных волокон, объединяясь между собой, образуют мышечные пучки, окруженные уже более толстой соединительнотканной оболочкой, называемой перимизием . Снаружи брюшко мышцы одето еще более плотным и прочным покровом, который называется фасцией , образованной плотной соединительной тканью и имеющей довольно сложное строение (рис.71). Фасции делятся на поверхностные и глубокие. Поверхностные фасции лежат непосредственно под подкожным жировым слоем, образуя для него своеобразный футляр. Глубокие (собственные) фасции покрывают отдельные мышцы или группы мышц, а также образуют влагалища для сосудов и нервов. Благодаря наличию соединительнотканных прослоек между пучками мышечных волокон, мышца может сокращаться не только целиком, но и отдельной частью.

Все соединительнотканные образования мышцы с мышечного брюшка переходят на сухожильные концы (рис. 69, 71), которые состоят из плотной волокнистой соединительной ткани.

Сухожилия в организме человека формируются под влиянием величины мышечной силы и направления ее действия. Чем больше эта сила, тем сильнее разрастается сухожилие. Таким образом, у каждой мышцы характерное для нее (как по величине, так и по форме) сухожилие.

Сухожилия по цвету резко отличаются от мышц. Мышцы имеют красно-бурый цвет, а сухожилия белые, блестящие. Форма сухожилий мышц весьма разнообразна, но чаще встречаются сухожилия длинные узкие или плоские широкие (рис. 71, 72, 80). Плоские, широкие сухожилия носят названия апоневрозов (мышцы живота и др.), их, в основном, имеют мышцы, участвующие в образовании стенок брюшной полости. Сухожилия очень прочны и крепки. Например, пяточное сухожилие выдерживает нагрузку около 400 кг, а сухожилие четырехглавой мышцы бедра – 600 кг.

Сухожилия мышцы фиксируются или прикрепляются. В большинстве случаев они прикрепляются к костным звеньям скелета, подвижным по отношению друг к другу, иногда к фасциям (предплечья, голени), к коже (в области лица) или к органам (мышцы глазного яблока). Один конец сухожилия является началом мышцы и называется головкой , другой – местом прикрепления и называется хвостом . За начало мышцы обычно принимается ее проксимальный конец (проксимальная опора), расположенный ближе к срединной линии тела или к туловищу, за место прикрепления – дистальная часть (дистальная опора), расположенная дальше от указанных образований. Место начала мышцы считают неподвижной (фиксированной) точкой, место прикрепления мышцы подвижной точкой. При этом имеют в виду наиболее часто наблюдаемые движения, при которых дистальные звенья тела, находящиеся дальше от тела, более подвижны, чем проксимальные, лежащие ближе к нему. Но встречаются движения, при которых бывают закреплены дистальные звенья тела (например, при выполнении движений на спортивных снарядах), в этом случае проксимальные звенья приближаются к дистальным. Поэтому мышца может совершать работу или при проксимальной, или при дистальной опоре.

Мышцы, будучи органом активным, характеризуются интенсивным обменом веществ, хорошо снабжены кровеносными сосудами, которые доставляют кислород, питательные вещества, гормоны и уносят продукты мышечного обмена и углекислый газ. В каждую мышцу кровь поступает по артериям, протекает в органе по многочисленным капиллярам, а оттекает из мышцы по венам и лимфатическим сосудам. Ток крови через мышцу непрерывен. Однако количество крови и число капилляров, пропускающих ее, зависят от характера и интенсивности работы мышцы. В состоянии относительного покоя функционирует примерно 1 / 3 капилляров.

Классификация мышц. В основу классификации мышц положен функциональный принцип, так как величина, форма, направление мышечных волокон, положение мышцы зависят от выполняемой ею функции и совершаемой работы (табл. 4).

Таблица 4

Классификация мышц

1. В зависимости от места расположения мышц их подразделяют на соответствующие топографические группы : мышцы головы, шеи, спины, груди, живота, мышцы верхних и нижних конечностей.

2. По форме мышцы очень разнообразны: длинные, короткие и широкие, плоские и веретенообразные, ромбовидные, квадратные и т.п. Эти различия связаны с функциональным значением мышц (рис. 72).

Рис 72. Форма скелетных мышц:

а-веретенообразная, б-двуглавая, в-двубрюшная, г-лентовидная, д-двуперистая, е-одноперистая: 1-брюшко мышцы, 2-сухожилие, 3-промежуточное сухожилие, 4-сухожильные перемычки.

В длинных мышцах продольный размер превалирует над поперечным. Они имеют незначительную площадь прикрепления к костям, расположены в основном на конечностях и обеспечивают значительную амплитуду их движений (рис. 72а).

У коротких мышц продольный размер лишь немного больше поперечного. Они встречаются на тех участках тела, где размах движений невелик (например, между отдельными позвонками, между затылочной костью, атлантом и осевым позвонком).

Широкие мышцы находятся преимущественно в области туловища и поясов конечностей. Эти мышцы имеют пучки мышечных волокон, идущих в разных направлениях, сокращаются как целиком, так и своими отдельными частями; у них значительная площадь прикрепления к костям. В отличие от других мышц они обладают не только двигательной функцией, но также опорной и защитной. Так, мышцы живота помимо участия в движениях туловища, акте дыхания, при натуживании, укрепляют стенку живота, способствуя удержанию внутренних органов. Встречаются мышцы, имеющие индивидуальную форму, трапециевидная, квадратная мышца поясницы, пирамидальная.

Большинство мышц имеет одно брюшко и два сухожилия (головку и хвост, рис. 72а). Некоторые длинные мышцы имеют не одно, а два, три или четыре брюшка и соответствующее им количество сухожилий, начинающихся или заканчивающихся на различных костях. В одних случаях такие мышцы начинаются проксимальными сухожилиями (головками) от разных костных точек, а затем сливаются в одно брюшко, которое прикрепляется одним дистальным сухожилием – хвостом (рис. 72б). Например, двуглавая и трехглавая мышцы плеча, четырехглавая мышца бедра, икроножная мышца. В других случаях мышцы начинаются одним проксимальным сухожилием, а брюшко заканчивается несколькими дистальными сухожилиями, прикрепляющимися к разным костям (сгибатели и разгибатели пальцев кисти и стопы). Встречаются мышцы, где брюшко разделено одним промежуточным сухожилием (двубрюшная мышца шеи, рис. 72в) или несколькими сухожильными перемычками (прямая мышца живота, рис. 72г).

3. Существенное значение для работы мышц имеет направление их волокон. По направлению волокон , обусловленному функционально, различают мышцы с прямыми, косыми, поперечными и круговыми волокнами. В прямых мышцах мышечные волокна расположены параллельно длиннику мышцы (рис. 65 а, б, в, г). Эти мышцы обычно длинные и не обладают большой силой.

Мышцы с косым направлением волокон могут прикрепляться к сухожилию с одной стороны (одноперистые, рис. 65е) либо с двух сторон (двуперистые, рис. 65д). При своем сокращении эти мышцы могут развивать значительную силу.

Мышцы, имеющие круговые волокна , располагаются вокруг отверстий и при своем сокращении суживают их (например, круговая мышца глаза, круговая мышца рта). Эти мышцы называются сжимателями или сфинктерами (рис. 83). Иногда мышцы имеют веерообразный ход волокон. Чаще это широкие мышцы, располагающиеся в области шаровидных суставов и обеспечивающие разнообразие движений (рис. 87).

4. По положению в теле человека мышцы делятся на поверхностные и глубокие , наружные и внутренние , медиальные и латеральные .

5. По отношению к суставам , через которые (один, два или несколько) перекидываются мышцы, различают мышцы одно-, двух- и многосуставные. Односуставные мышцы фиксируются к соседним костям скелета и переходят через один сустав, а многосуставные мышцы переходят через два и более суставов, производя движения в них. Многосуставные мышцы как более длинные располагаются поверхностнее односуставных. Перекидываясь через сустав, мышцы имеют определенное отношение к осям его движения.

6. По выполняемой функции мышцы делятся на сгибатели и разгибатели, отводящие и приводящие, супинаторы и пронаторы, поднимающие и опускающие, жевательные и др.

Закономерности положения и функции мышц . Мышцы перебрасываются через сустав, они имеют определенное отношение к оси данного сустава, чем и обусловливается функция мышцы. Обычно мышца перекрывает ту или другую ось под прямым углом. Если мышца лежит впереди сустава, то она вызывает сгибание, сзади – разгибание, медиально – приведение, латерально – отведение. Если мышца лежит вокруг вертикальной оси вращения сустава, то она вызывает вращение вовнутрь или наружу. Поэтому, зная сколько и какие движения возможны в данном суставе, всегда можно предугадать, какие по функции залегают мышцы и где они расположены.

Мышцы обладают энергичным обменом веществ, который еще более повышается при увеличении работы мышцы. При этом к мышце увеличивается приток крови по сосудам. Усиленная функция мускулатуры вызывает улучшение питания и увеличение массы мышцы (рабочая гипертрофия). При этом увеличивается абсолютная масса и размер мышцы за счет увеличения мышечных волокон. Физические упражнения, связанные с различными видами труда и спорта, вызывают рабочую гипертрофию тех мышц, которые оказываются наиболее нагруженными. Нередко по фигуре спортсмена можно сказать, каким видом спорта он занимается – плаванием, легкой или тяжелой атлетикой. Гигиена труда и спорта требует универсальной гимнастики, которая способствует гармоничному развитию тела человека. Правильные физические упражнения вызывают пропорциональное развитие мускулатуры всего тела. Так как усиленная работа мышц оказывает влияние на обмен веществ всего организма, то физическая культура является одним из мощных факторов благоприятного влияния на него.

Вспомогательный аппарат мышц. Мышцы, сокращаясь, выполняют свою функцию при участии и при помощи ряда анатомических образований, которые следует рассматривать как вспомогательные. К вспомогательному аппарату скелетных мышц относятся сухожилия, фасции, межмышечные перегородки, синовиальные сумки и влагалища, мышечные блоки, сесамовидные кости.

Фасции покрывают как отдельные мышцы, так и группы мышц. Различают поверхностные (подкожные) и глубокие фасции. Поверхностные фасции лежат под кожей, окружая всю мускулатуру данной области. Глубокие фасции покрывают группу мышц-синергистов (т.е. выполняющих однородную функцию) или каждую отдельную мышцу (собственная фасция). От фасций вглубь отходят отростки – межмышечные перегородки. Они отделяют друг от друга группы мышц и прикрепляются к костям.

Удерживатели сухожилий располагаются в области некоторых суставов конечностей. Они представляют собой лентообразные утолщения фасций и располагаются поперечно над сухожилиями мышц подобно ремням, фиксируя их к костям.

Синовиальные сумки – тонкостенные соединительнотканные мешочки, заполненные жидкостью похожей на синовию и расположенные под мышцами, между мышцами и сухожилиями или костью. Они уменьшают трение.

Синовиальные влагалища развиваются в тех местах, где сухожилия прилегают к кости (т. е. в костно-фиброзных каналах). Это замкнутые образования, в виде муфты или цилиндра охватывающие сухожилие. Каждое синовиальное влагалище состоит из двух листков. Один листок, внутренний, охватывает сухожилие, а второй, наружный, выстилает стенку фиброзного канала. Между листками находится небольшая щель, заполненная синовиальной жидкостью, облегчающей скольжение сухожилия.

Сесамовидные кости располагаются в толще сухожилий, ближе к месту их прикрепления. Они изменяют угол подхода мышцы к кости и увеличивают плечо силы мышцы. Самой крупной сесамовидной костью является надколенник.

Вспомогательный аппарат мышц образует дополнительную опору для них – мягкий скелет, обусловливает направление тяги мышц, способствует их изолированному сокращению, не дает смещаться при сокращении, увеличивает силу мышц и способствует кровообращению и лимфооттоку.

Выполняя многочисленные функции, мышцы работают согласованно, образуя функциональные рабочие группы . Мышцы включаются в функциональные группы по направлению движения в суставе, по направлению движения части тела, по изменению объема полости и по изменению размера отверстия.

При движениях конечностей и их звеньев выделяют функциональные группы мышц – сгибающие, разгибающие, отводящие и приводящие, пронирующие и супинирующие.

При движении туловища различают функциональные группы мышц – сгибающие и разгибающие (наклоняющие вперед и назад), наклоняющие вправо или влево, поворачивающие вправо или влево. По отношению к движению отдельных частей тела выделяют функциональные группы мышц, поднимающие и опускающие, осуществляющие движение вперед и назад; по изменению размера отверстия – суживающие и расширяющие его.

В процессе эволюции функциональные группы мышц развивались парами: сгибающая группа формировалась совместно с разгибающей, пронирующая – совместно с супинирующей и т. п. Это наглядно выявляется на примерах развития суставов: каждая ось вращения в суставе, выражая его форму, имеет свою функциональную пару мышц. Такие пары состоят, как правило, из противоположных по функции групп мышц. Так, одноосные суставы имеют одну пару мышц, двухосные – две пары, а трехосные – три пары или соответственно две, четыре, шесть функциональных групп мышц.

Синергизм и антагонизм в действиях мышц . Мышцы, входящие в функциональную группу, характеризуются тем, что проявляют одинаковую двигательную функцию. В частности, все они или притягивают кости – укорачиваются, или отпускают – удлиняются, или же проявляют относительную стабильность напряжения, размеров и формы. Мышцы, совместно действующие в одной функциональной группе, называются синергистами . Синергизм проявляется не только при движениях, но и при фиксации частей тела.

Мышцы противоположных по действию функциональных групп мышц называются антагонистами . Так, мышцы-сгибатели будут антагонистами мышц-разгибателей, пронаторы – антагонистами супинаторов и т. п. Однако истинного антагонизма между ними нет. Он проявляется лишь в отношении определенного движения или определенной оси вращения.

Следует отметить, что при движениях, в которых участвует одна мышца, синергизма быть не может. Вместе с тем антагонизм имеет место всегда, и только согласованная работа мышц-синергистов и мышц-антагонистов обеспечивает плавность движений и пре­дотвращает травмы. Так, например, при каждом сгибании действует не только сгибатель, но обязательно и разгибатель, который постепенно уступает сгибателю и удерживает его от чрезмерного сокращения. Поэтому антагонизм обеспечивает плавность и соразмерность движений. Каждое движение, таким образом, есть результат действия антагонистов.

Двигательная функция мышц. Поскольку каждая мышца фиксируется преимущественно к костям, то внешне двигательная функция ее выражается в том, что она либо притягивает кости, либо удерживает, либо отпускает их.

Мышца притягивает кости, когда она активно сокращается, брюшко ее укорачивается, места прикреплений сближаются, расстояние между костями и угол в суставе уменьшаются в сторону тяги мышцы.

Удержание костей происходит при относительно постоянном напряжении мышцы, почти незаметном изменении ее длины.

Если движение осуществляется при эффективном действии внешних сил, например силы тяжести, то мышца удлиняется до определенного предела и отпускает кости; они отдаляются друг от друга, причем движение их происходит в обратном направлении по сравнению с тем, которое имело место при притягивании костей.

Для понимания функции скелетной мышцы необходимо знать, с какими костями связана мышца, через какие суставы она проходит, какие оси вращения она пересекает, с какой стороны пересекает ось вращения, при какой опоре действует мышца.

Тонус мышц. В организме каждая скелетная мышца всегда находится в состоянии определенного напряжения, готовности к действию. Минимальное непроизвольное рефлекторное напряжение мышцы называется тонусом мышцы . Физические упражнения повышают тонус мышц, влияют на тот своеобразный фон, с которого начинается действие скелетной мышцы. У детей тонус мышц меньше, чем у взрослых, у женщин меньше, чем у мужчин, у не занимающихся спортом меньше, чем у спортсменов.

Для функциональной характеристики мышц используются такие показатели как их анатомический и физиологический поперечник. Анатомический поперечник – площадь поперечного сечения, перпендикулярного длиннику мышцы и проходящего через брюшко в наиболее широкой его части. Этот показатель характеризует величину мышцы, её толщину (фактически определяет объём мышцы). Физиологический поперечник представляет собой суммарную площадь поперечного сечения всех мышечных волокон, входящих в состав мышцы. А поскольку сила сокращающейся мышцы зависит от величины поперечного сечения мышечных волокон, то физиологический поперечник мышцы характеризует её силу. У мышц веретенообразной и лентовидной формы с параллельным расположением волокон анатомический и физиологический поперечник совпадают. Иначе у перистых мышц. Из двух равновеликих мышц, имеющих одинаковый анатомический поперечник, у перистой мышцы физиологический поперечник будет больше, чем у веретенообразной. В связи с этим перистая мышца обладает большей силой, однако размах сокращения её коротких мышечных волокон будет меньше, чем у веретенообразной мышцы. Поэтому перистые мышцы имеются там, где необходима значительная сила мышечных сокращений при сравнительно небольшом размахе движений (мышцы стопы, голени, некоторые мышцы предплечья). Веретенообразные, лентовидные мышцы, построенные из длинных мышечных волокон, при сокращении укорачиваются на большую величину. В то же время силу они развивают меньшую, чем перистые мышцы, имеющие одинаковый с ними анатомический поперечник.

Виды работы мышц. Тело человека и его части при сокращении соответствующих мышц изменяют своё положение, приходят в движение, преодолевают сопротивление силы тяжести или, наоборот, уступают этой силе. В других случаях при сокращении мышц тело удерживается в определённом положении без выполнения движения. Исходя из этого, различают преодолевающую, уступающую и удерживающую работу мышц.

Преодолевающая работа выполняется в том случае, когда сила сокращения мышцы изменяет положение части тела, конечности или её звена с грузом или без него, преодолевая силу сопротивления. Например, двуглавая мышца плеча, сгибая предплечье, выполняет преодолевающую работу, дельтовидная мышца (главным образом ее средние пучки) при отведении руки также выполняет преодолевающую работу.

Уступающей называется работа, при которой мышца, оставаясь напряженной, постепенно расслабляется, уступая действию силы тяжести части (конечности) тела и удерживаемого ею груза. Например, при приведении отведенной руки дельтовидная мышца выполняет уступающую работу, она постепенно расслабляется и рука опускается.

Удерживающей называется работа, при которой сила тяжести уравновешивается напряжением мышц и тело или груз удерживается в определённом положении без перемещения в пространстве. Например, при удержании руки в отведенном положении дельтовидная мышца выполняет удерживающую работу.

Преодолевающая и уступающая работа, когда сила мышечных сокращений обусловлена перемещением тела или его частей в пространстве, можно рассматривать как динамическую работу . Удерживающая работа, при которой движения всего тела или части тела не происходит, является статической . Используя тот или иной вид работы, можно значительно разнообразить свою тренировку и сделать её более эффективной.

Мышечные ткани объединяет способность к сокращению.

Особенности строения: сократительный аппарат, занимающий значительную часть в цитоплазме структурных элементов мышечной ткани и состоящий из актиновых и миозиновых филаментов, которые формируют органеллы специального назначения –миофибриллы .

Классификация мышечных тканей

1. Морфофункциональная классификация:

1) Поперечнополосатая, или исчерченная мышечная ткань: скелетная и сердечная;

2) Неисчерченная мышечная ткань: гладкая.

2. Гистогенетическая классификация (в зависимости от источников развития):

1) Соматического типа (из миотомов сомитов) – скелетная мышечная ткань (поперечнополосатая);

2) Целомического типа (из миоэпикардиальной пластинки висцерального листка спланхнотома) – сердечная мышечная ткань (поперечнополосатая);

3) Мезенхимного типа (развивается из мезенхимы) – гладкая мышечная ткань;

4) Из кожной эктодермы и прехордальной пластинки – миоэпителиальные клетки желёз (гладкие миоциты);

5) Нейрального происхождения (из нервной трубки) – мионейральные клетки (гладкие мышцы, суживающие и расширяющие зрачок).

Функции мышечной ткани : перемещение тела или его частей в пространстве.

СКЕЛЕТНАЯ МЫШЕЧНАЯ ТКАНЬ

Исчерченная (поперечно-полосатая) мышечная ткань составляет до 40% массы взрослого человека, входит в состав скелетных мышц, мышц языка, гортани и др. Относятся к произвольным мышцам, поскольку их сокращения подчиняются воле человека. Именно эти мышцы задействованы при занятии спортом.

Гистогенез. Скелетная мышечная ткань развивается из клеток миотомов миобластов. Различают головные, шейные, грудные, поясничные, крестцовые миотомы. Они разрастаются в дорзальном и вентральном направлениях. В них рано врастают ветви спинномозговых нервов. Часть миобластов дифференцируется на месте (образуют аутохтонную мускулатуру), а другие с 3 недели внутриутробного развития мигрируют в мезенхиму и, сливаясь друг с другом, образуют мышечные трубки (миотубы ) с крупными центрально ориентированными ядрами. В миотубах происходит дифференцировка специальных органелл миофибрилл. Первоначально они располагаются под плазмолеммой, а затем заполняют большую часть миотубы. Ядра смещаются к периферии. Клеточные центры и микротрубочки исчезают, грЭПС значительно редуцируется. Такая многоядерная структура называется симпласт , а для мышечной ткани – миосимпласт . Часть миобластов дифференцируется в миосателлитоциты, которые располагаются на поверхности миосимпластов и впоследствии принимают участие в регенерации мышечной ткани.

Строение скелетной мышечной ткани

Рассмотрим строение мышечной ткани на нескольких уровнях организации живого: на органном уровне (мышца как орган), на тканевом (непосредственно мышечная ткань), на клеточном (строение мышечного волокна), на субклеточном (строение миофибриллы) и на молекулярном уровне (строение актиновых и миозиновых нитей).

На каритнке:

1 — мышца икроножная (органный уровень), 2 — поперечный срез мышцы (тканевой уровень) — мышечные волокна, между которыми РВСТ: 3 — эндомизий, 4 — нервное волокно, 5 — кровеносный сосуд; 6 — поперечный срез мышечного волокна (клеточный уровень): 7 — ядра мышечного волокна — симпласта, 8 — митохондрия между миофибриллами, синим цветом — саркоплазматический ретикулум; 9 — поперечный срез миофибриллы (субклеточный уровень): 10 — тонкие актиновые нити, 11 — толстые миозиновые нити, 12 — головки толстых миозиновых нитей.

1) Органный уровень: строение мышцы как органа.

Скелетная мышца состоит из пучков мышечных волокон, связанных воедино системой соединительнотканных компонентов. Эндомизий – прослойки РВСТ между мышечными волокнами, где проходят кровеносные сосуды, нервные окончания. Перимизий – окружает 10-100 пучков мышечных волокон. Эпимизий – наружная оболочка мышцы, представлена плотной волокнистой тканью.

2) Тканевой уровень: строение мышечной ткани.

Структурно-функциональной единицей скелетной поперечнополосатой (исчерченной) мышечной ткани является мышечное волокно – цилиндрической формы образование диаметром 50 мкм и длиной от 1 до 10-20 см. Мышечное волокно состоит из 1) миосимпласта (образование его смотри выше, строение – ниже), 2) мелких камбиальных клеток – миосателлитоцитов , прилежащих к поверхности миосимпласта и располагающиеся в углублениях его плазмолеммы, 3) базальной мембраны, которой покрыта плазмолемма. Комплекс плазмолеммы и базальной мембраны называется сарколемма . Для мышечного волокна характерна поперечная исчерченность, ядра смещены на периферию. Между мышечными волокнами – прослойки РВСТ (эндомизий).

3) Клеточный уровень: строение мышечного волокна (миосимпласта).

Термин «мышечное волокно» подразумевает «миосимпласт», поскольку миосимпласт обеспечивает функцию сокращения, миосателлитоциты участвуют только в регенерации.

Миосимпласт , как и клетка, состоит из 3-х компонентов: ядра (точнее множества ядер), цитоплазмы (саркоплазма) и плазмолеммы (которая покрыта базальной мембраной и называется сарколемма). Почти весь объём цитоплазмы заполнен миофибриллами – органеллами специального назначения, органеллы общего назначения: грЭПС, аЭПС, митохондрии, комплекс Гольджи, лизосомы, а также ядра смещены на периферию волокна.

В мышечном волокне (миосимпласте) различают функциональные аппараты: мембранный , фибриллярный (сократительный) и трофический .

Трофический аппарат включает ядра, саркоплазму и цитоплазматические органеллы: митохондрии (синтез энергии), грЭПС и комплекс Гольджи (синтез белков – структурных компонентов миофибрилл), лизосомы (фагоцитоз изношенных структурных компонентов волокна).

Мембранный аппарат : каждое мышечное волокно покрыто сарколеммой, где различают наружную базальную мембрану и плазмолемму (под базальной мембраной), которая образует впячивания (Т -трубочки). К каждой Т -трубочке примыкают по две цистерны триаду : две L -трубочки (цистерны аЭПС) и одна Т -трубочка (впячивание плазмолеммы). В цистернах аЭПС концентрируются Са 2+ , необходимый при сокращении. К плазмолемме снаружи прилежат миосателлитоциты. При повреждении базальной мембраны запускается митотический цикл миосателлитоцитов.

Фибриллярный аппарат .Большую часть цитоплазмы исчерченных волокон занимают органеллы специального назначения – миофибриллы, ориентированы продольно, обеспечивающие сократительную функцию ткани.

4) Субклеточный уровень: строение миофибриллы.

При исследовании мышечных волокон и миофибрилл под световым микроскопом, отмечается чередование в них темных и светлых участков – дисков. Темные диски отличаются двойным лучепреломлением и называются анизотропными дисками, или А - дисками. Светлые диски не обладают двойным лучепреломлением и называются изотропными, или I -дисками.

В середине диска А имеется более светлый участок – Н -зона, где содержатся только толстые нити белка миозина. В середине Н -зоны (значит и А -диска) выделяется более темная М -линия, состоящая из миомезина (необходим для сборки толстых нитей и их фиксации при сокращении). В середине диска I расположена плотная линия Z , которая построена из белковых фибриллярных молекул. Z -линия соединена с соседними миофибриллами с помощью белка десмина, и поэтому все названные линии и диски соседних миофибрилл совпадают и создается картина поперечнополосатой исчерченности мышечного волокна.

Структурной единицей миофибриллы является саркомер (S ) это пучок миофиламентов заключенный между двумя Z -линиями. Миофибрилла состоит из множества саркомеров. Формула, описывающая структуру саркомера:

S = Z 1 + 1/2 I 1 + А + 1/2 I 2 + Z 2

5) Молекулярный уровень: строение актиновых и миозиновых филаментов .

Под электронным микроскопом миофибриллы представляют агрегаты из толстых, или миозиновых , и тонких, или актиновых , филаментов. Между толстыми филаментами располагаются тонкие филаменты (диаметр 7-8 нм).

Толстые филаменты, или миозиновые нити, (диаметр 14 нм, длина 1500 нм, расстояние между ними 20-30 нм) состоят из молекул белка миозина, являющимся важнейшим сократительным белком мышцы, по 300-400 молекул миозина в каждой нити. Молекула миозина – это гексамер, состоящий из двух тяжелых и четырех легких цепей. Тяжелые цепи представляют собой две спирально закрученные полипептидные нити. Они несут на своих концах шаровидные головки. Между головкой и тяжелой цепью находится шарнирный участок, с помощью которого головка может изменять свою конфигурацию. В области головок – легкие цепи (по две на каждой). Молекулы миозина уложены в толстой нити таким образом, что их головки обращены наружу, выступая над поверхностью толстой нити, а тяжелые цепи образуют стержень толстой нити.

Миозин обладает АТФ-азной активностью: высвобождающаяся энергия используется для мышечного сокращения.

Тонкие филаменты, или актиновые нити, (диаметр 7-8 нм), образованы тремя белками: актином, тропонином и тропомиозином. Основным по массе белком является актин, который образует спираль. Молекулы тропомиозина располагаются в желобке этой спирали, молекулы тропонина располагаются вдоль спирали.

Толстые нити занимают центральную часть саркомера – А -диск, тонкие занимают I - диски и частично входят между толстыми миофиламентами. Н -зона состоит только из толстых нитей.

В покое взаимодействие тонких и толстых нитей (миофиламентов) невозможно, т.к. миозин-связывающие участки актина заблокированы тропонином и тропомиозином. При высокой концентрации ионов кальция конформационные изменения тропомиозина приводят к разблокированию миозин-связывающих участков молекул актина.

Двигательная иннервация мышечного волокна . Каждое мышечное волокно имеет собственный аппарат иннервации (моторная бляшка) и окружено сетью гемокапилляров, располагающихся в прилежащей РВСТ. Этот комплекс называется мион. Группа мышечных волокон, которые иннервируются одним мотонейроном, называется нервно-мышечной единицей. Мышечные волокна в этом случае могут располагаться не рядом (одно нервное окончание может контролировать от одного до десятков мышечных волокон).

При поступлении нервных импульсов по аксонам двигательных нейронов происходит сокращение мышечного волокна .

Сокращение мышцы

При сокращении мышечные волокна укорачиваются, но длина актиновых и миозиновых филаментов в миофибриллах не изменяется, а происходит их движение друг относительно друга: миозиновые нити вдвигаются в пространства между актиновыми а, актиновые – между миозиновыми. В результате этого уменьшается ширина I -диска, H -полоски и уменьшается длина саркомера; ширина А -диска не изменяется.

Формула саркомера при полном сокращении:S = Z 1 + А + Z 2

Молекулярный механизм мышечного сокращения

1. Прохождение нервного импульса через нервно-мышечный синапс и деполяризация плазмолеммы мышечного волокна;

2. Волна деполяризации проходит по Т -трубочкам (впячивания плазмолеммы) до L -трубочек (цистерны саркоплазматического ретикулума);

3. Открытие кальциевых каналов в саркоплазматическом ретикулуме и выход ионов Са 2+ в саркоплазму;

4. Кальций диффундирует к тонким нитям саркомера, связывается с тропонином С, приводя к конформационным изменениям тропомиозина и освобождая активные центры для связывания миозина и актина;

5. Взаимодействие миозиновых головок с активными центрами на молекуле актина с образованием актино-миозиновых «мостиков»;

6. Миозиновые головки «шагают» по актину, образуя в ходе перемещения новые связи актина и миозина, при этом актиновые нити подтягиваются в пространство между миозиновыми нитями к M -линии, сближая две Z -линии;

7. Расслабление: Са 2+ -АТФ-аза саркоплазматического ретикулума закачивает Са 2+ из саркоплазмы в цистерны. В саркоплазме концентрация Са 2+ становится низкой. Разрываются связи тропонина С с кальцием, тропомиозин закрывает миозин-связывающие участки тонких нитей и препятствует их взаимодействию с миозином.

Каждое движение головки миозина (присоединение к актину и отсоединение) сопровождается затратой энергии АТФ.

Чувствительная иннервация (нервно-мышечные веретена). Интрафузальные мышечные волокна вместе с чувствительными нервными окончаниями формируют нервно-мышечные веретена, являющиеся рецепторами скелетной мышцы. Снаружи сформирована капсула веретена. При сокращении поперечно-полосатых (исчерченных) мышечных волокон изменяется натяжение соединительно-тканной капсулы веретена и соответственно изменяется тонус интрафузальных (расположенных под капсулой) мышечных волокон. Формируется нервный импульс. При избыточном растяжении мышцы возникает чувство боли.

Классификация и типы мышечных волокон

1. По характеру сокращения: фазные и тонические мышечные волокна. Фазные способны осуществлять быстрые сокращения, но не могут длительно удерживать достигнутый уровень укорочения. Тонические мышечные волокна (медленные) обеспечивают поддержание статического напряжения или тонуса, что играет роль в сохранения определённого положения тела в пространстве.

2. По биохимическим особенностям и цвету выделяют красные и белые мышечные волокна . Цвет мышцы обусловлен степенью васкуляризации и содержанием миоглобина. Характерной особенностью красных мышечных волокон является наличие многочисленных митохондрий, цепи которых располагаются между миофибриллами. В белых мышечных волокнах митохондрий меньше и они располагаются равномерно в саркоплазме мышечного волокна.

3. По типу окислительного обмена : оксидативные, гликолитические и промежуточные . Идентификация мышечных волокон основана на выявлении активности фермента сукцинатдегидрогеназы (СДГ), которая является маркером для митохондрий и цикла Кребса. Активность этого фермента свидетельствует о напряженности энергетического метаболизма. Выделяют мышечные волокна А -типа (гликолитические) с низкой активностью СДГ, С -тип (оксидативные) с высокой активностью СДГ. Мышечные волокна В -типа занимают промежуточное положение. Переход мышечных волокон от А -типа в С -тип маркирует изменения от анаэробного гликолиза к метаболизму, зависящему от кислорода.

У спринтеров (спортсменов, когда нужен быстрое недолгое сокращение, культуристов) тренировки и питание направлено на развитие гликолитических, быстрых, белых мышечных волкон : в них много запасов гликогена и энергия добывается преимущественно анаэолбным путём (белое мясо у курицы). У стайеров (спортсменов — марафонцев, в тех видах спорта, где необходима выносливость) преобладают оксидативные, медленные, красные волокна в мышцах — в них много митохондрий для аэробного гликолиза, кровеносных сосудов (нужен кислород).

4. В исчерченных мышцах различают два вида мышечных волокон: экстрафузальные , которые преобладают и обуславливают собственно сократительную функцию мышцы и интрафузальные , входящие в состав проприоцепторов – нервно-мышечных веретен.

Факторами, определяющими структуру и функцию скелетной мышцы являются влияние нервной ткани, гормональное влияние, местоположение мышцы, уровень васкуляризации и двигательной активности.

СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ

Сердечная мышечная тканьнаходится в мышечной оболочке сердца (миокард) и в устьях связанных с ним крупных сосудов. Имеет клеточный тип строения и основным функциональным свойством служит способность к спонтанным ритмическим сокращениям (непроизвольные сокращения).

Развивается из миоэпикардиальной пластинки (висцеральный листок спланхнотома мезодермы в шейном отделе), клетки которой размножаются митозом, а потом дифференцируются. В клетках появляются миофиламенты, которые далее формируют миофибриллы.

Строение . Структурная единица сердечной мышечной ткани – клетка кардиомиоцит. Между клетками находятся прослойки РВСТ с кровеносными сосудами и нервами.

Типы кардиомиоцитов : 1) типичные (рабочие, сократительные), 2) атипичные (проводящие), 3) секреторные .

Типичные кардиомиоциты

Типичные (рабочие, сократительные) кардиомиоциты – клетки цилиндрической формы, длиной до 100-150 мкм и диаметром 10-20 мкм. Кардиомиоциты образуют основную часть миокарда, соединены друг с другом в цепочки основаниями цилиндров. Эти зоны называют вставочными дисками , в которых выделяют десмосомальные контакты и нексусы (щелевидные контакты). Десмосомы обеспечивают механическое сцепление, которое препятствует расхождению кардиомиоцитов. Щелевидные контакты способствуют передаче сокращения от одного кардиомиоцита к другому.

Каждый кардиомиоцит содержат одно или два ядра, саркоплазму и плазмолемму, окружённую базальной мембраной. Различают функциональные аппараты, такие же, как в мышечном волокне: мембранный , фибриллярный (сократительный), трофический, а также энергетический .

Трофический аппарат включает ядро, саркоплазму и цитоплазматические органеллы: грЭПС и комплекс Гольджи (синтез белков – структурных компонентов миофибрилл), лизосомы (фагоцитоз структурных компонентов клетки). Кардиомиоциты, как и олокна скелетной мышечной ткани, характеризуются наличием в их саркоплазме железосодержащего кислород-связывающего пигмента миоглобина, придающего им красный цвет и сходного по строению и функции с гемоглобином эритроцитов.

Энергетический аппарат представлен митохондриями и включениями, расщепление которых обеспечивает получение энергии. Митохондрии многочисленны, лежат рядами между фибриллами, у полюсов ядра и под сарколеммой. Энергия, необходимая кардиомиоцитам, получается путём расщепления: 1) основного энергетического субстрата этих клеток – жирных кислот , которые депонируются в виде триглицеридов в липидных каплях; 2) гликогена, находящегося в гранулах, расположенных между фибриллами.

Мембранный аппарат : каждая клетка покрыта оболочкой, состоящей из комплекса плазмолеммы и базальной мембраны. Оболочка образует впячивания (Т -трубочки). К каждой Т -трубочке примыкает одна цистерна (в отличие от мышечного волокна – там 2 цистерны) саркоплазматического ретикулума (видоизменённая аЭПС), образуя диаду : одна L -трубочка (цистерна аЭПС) и одна Т -трубочка (впячивание плазмолеммы). В цистернах аЭПС ионы Са 2+ накапливаются не так активно, как в мышечных волокнах.

Фибриллярный (сократительный) аппарат .Большую часть цитоплазмы кардиомиоцита занимают органеллы специального назначения – миофибриллы, ориентированы продольно и расположенные по периферии клетки.Сократительный аппарат рабочих кардиомиоцитовсходен со скелетными мышечными волокнами. При расслаблении, ионы кальция выделяются в саркоплазму с низкой скоростью, что обеспечивает автоматизм и частые сокращения кардиомиоцитов. Т -трубочки широкие и образуют диады (одна Т -трубочка и одна цистерна сети), которые сходятся в области Z -линии.

Кардиомиоциты, связываясь с помощью вставочных дисков, образуют сократительные комплексы, которые способствуют синхронизации сокращения, между кардиомиоцитами соседних сократительных комплексов образуются боковые анастомозы.

Функция типичных кардиомиоцитов : обеспечение силы сокращения сердечной мышцы.

Проводящие (атипичные) кардиомиоциты обладают способностью к генерации и быстрому проведению электрических импульсов. Они образуют узлы и пучки проводящей системы сердца и разделяются на несколько подтипов: пейсмекеры (в синоатриальном узле), переходные (в атрио-вентрикулярном узле) и клетки пучка Гиса и волокон Пуркинье. Проводящие кардиомиоциты характеризуются слабым развитием сократительного аппарата, светлой цитоплазмой и крупными ядрами. В клетках нет Т-трубочек и поперечной исчерченности, поскольку миофибриллы расположены неупорядоченно.

Функция атипичных кардиомиоцитов – генерация импульсов и передача на рабочие кардиомиоциты, обеспечивая автоматизм сокращения миокарда.

Секреторные кардиомиоциты

Секреторные кардиомиоцитынаходятся в предсердиях, преимущественно в правом; характеризуются отростчатой формой и слабым развитием сократительного аппарата. В цитоплзме, вблизи полюсов ядра – секреторные гранулы, содержащие натриуретический фактор, или атриопептин (гормон, регулирующий артериальное давление). Гормон вызывает потерю натрия и воды с мочой, расширение сосудов, снижение давления, угнетение секреции альдостерона, кортизола, вазопрессина.

Функция секреторных кардиомиоцитов : эндокринная.

Регенерация кардиомиоцитов. Для кардиомиоцитов характерна только внутриклеточная регенерация. Кардиомиоциты не способны к делению, у них отсутствуют камбиальные клетки.

ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ

Гладкая мышечная ткань образует стенки внутренних полых органов, сосудов; характеризуется отсутствием исчерченности, непроизвольными сокращениями. Иннервация осуществляется вегетативной нервной системой.

Структурно-функциональная единица неисчерченной гладкой мышечной ткани – гладкая мышечная клетка (ГМК), или гладкий миоцит. Клетки имеют веретенообразную форму длиной 20-1000 мкм и толщиной от 2 до 20 мкм. В матке клетки имеют вытянутую отростчатую форму.

Гладкий миоцит

Гладкий миоцит состоит из расположенного в центре ядра палочковидной формы, цитоплазмы с органеллами и сарколеммы (комплекс плазмолеммы и базальной мембраны). В цитоплазме у полюсов находится комплекс Гольджи, много митохондрий, рибосом, развит саркоплазматический ретикулум. Миофиламенты расположены косо или вдоль продольной оси. В ГМК актиновые и миозиновые филаменты не формируют миофибрилл. Актиновых нитей больше и они прикрепляются к плотным тельцам, которые образованы специальными сшивающими белками. Рядом с актиновыми нитями располагаются мономеры миозина (микромиозин). Обладая разной длиной, они значительно короче тонких нитей.

Сокращение гладких мышечных клеток осуществляется при взаимодействии актиновых филаментов и миозина. Сигнал, идущий по нервным волокнам, обуславливает выделение медиатора, что изменяет состояние плазмолеммы. Она образует колбовидные впячивания (кавеолы), где концентрируются ионы кальция. Сокращение ГМК индуцируется притоком ионов кальция в цитооплазму: кавеолы отшнуровываются и вместе с ионами кальция попадают в клетку. Это приводит к полимеризации миозина и взаимодействию его с актином. Актиновые нити и плотные тельца сближаются, усилие передается на сарколемму и ГМК укорачивается. Миозин в гладких миоцитах способен взаимодействовать с актином только после фосфорилирования его легких цепей особым ферментом – киназой легких цепей. После прекращения сигнала ионы кальция покидают кавеолы; миозин деполяризуется, теряет сродство к актину. В результате комплексы миофиламентов распадаются; сокращение прекращается.

Особые типы мышечных клеток

Миоэпителиальные клетки являются производными эктодермы, не имеют исчерченности. Окружают секреторные отделы и выводные протоки желез (слюнных, молочных, слезных). С железистыми клетками они связаны десмосомами. Сокращаясь, способствуют выделению секрета. В концевых (секреторных) отделах форма клеток отросчатая, звездчатая. Ядро в центре, в цитоплазме, преимущественно в отростках локализованы миофиламенты, которые образуют сократительный аппарат. В этих клетках есть и цитокератиновые промежуточные филаменты, что подчеркивает их сходство с эпителиоцитами.

Мионейральные клетки развиваются из клеток наружного слоя глазного бокала и образуют мышцу, суживающую зрачок и мышцу, расширяющую зрачок. По строению первая мышца сходна с ГМК мезенхимного происхождения. Мышца, расширяющая зрачок образована отростками клеток, располагающимися радиально, а ядросодержащая часть клетки находится между пигментным эпителием и стромой радужки.

Миофибробласты относятся к рыхлой соединительной ткани и представляют собой видоизмененные фибробласты. Они проявляют свойства фибробластов (синтезируют межклеточное вещество) и гладких миоцитов (обладают выраженными сократительными свойствами). Как вариант этих клеток можно рассматривать миоидные клетки в составе стенки извитого семенного канальца яичка и наружного слоя теки фолликула яичника. При заживлении раны часть фибробластов синтезирует гладкомышечные актины и миозины. Миофибробласты обеспечивают стягивание краёв раны.

Эндокринные гладкие миоциты – это видоизмененные ГМК, представляющие основной компонент юкстагломерулярного аппарата почек. Они находятся в стенке артериол почечного тельца, имеют хорошо развитый синтетический аппарат и редуцированный сократительный. Продуцируют фермент ренин, находящийся в гранулах и попадающий в кровь механизмом экзоцитоза.

Регенерация гладкой мышечной ткани. Гладкие миоциты характеризуются внутриклеточной регенерацией. При повышении функциональной нагрузки происходит гипертрофия миоцитов и в некоторых органах гиперплазия (клеточная регенерация). Так, при беременности гладко-мышечные клетки матки могут увеличиваться в 300 раз.