Методы изучения функций цнс. Современные методы исследования центральной нервной системы

Ультразвуковая допплерография экстракраниальных сосудов - исследование состояния сонных и позвоночных артерий. Дает важную для диагностики и лечения информацию при недостаточности мозгового кровообращения, при различных типах головных болей, головокружениях (особенно связанных с поворотами головы) или неустойчивостью при ходьбе, приступах падений и/или потери сознания.

Транскраниальная ультразвуковая допплерография - метод исследования кровотока в сосудах головного мозга. Применяется в диагностике состояния сосудов головного мозга, наличия сосудистых аномалий, нарушении оттока венозной крови из полости черепа, выявления косвенных признаков повышения внутричерепного давления

Ультразвуковая допплерография периферических сосудов - исследование кровотока в периферических сосудах рук и ног. Исследование информативно при жалобах на боли в конечностях при нагрузке и хромоту, зябкость в руках и ногах, изменение цвета кожи рук и ног. Помогает в диагностике облитерирующих заболеваний сосудов конечностей, венозной патологии (варикозная и посттромбофлебитическая болезни, несостоятельность клапанов вен).

Ультразвуковая допплерография глазных сосудов - позволяет оценить степень и характер нарушения кровотока на глазном дне при закупорке артерий глаза, при гипертонической болезни, при сахарном диабете.

Ультразвуковая диагностика заболеваний сосудов при помощи дуплексного сканирования является быстрым, высокоинформативным, абсолютно безопасным, неинвазивным методом исследования. Дуплексное сканирование - метод, объединяющий возможности визуализации сосудистых структур в режиме реального времени с характеристикой кровотока в данном исследуемом сосуде. Эта технология в отдельных случаях может превосходить по точности данные рентгеноконтрастной ангиографии.

ДС наиболее широко используется в диагностике заболеваний ветвей дуги аорты и периферических сосудов. При помощи метода можно оценить состояние сосудистых стенок, их толщину, сужение и степени сужения сосуда, наличие в просвете включений, таких как, тромб, атеросклеротическая бляшка. Наиболее частой причиной сужения сонных артерий является атеросклероз, реже - воспалительные заболевания; возможны и врожденные аномалии развития сосудов. Большое значение для прогноза атросклеротического поражения сосудов головного мозга и выбора лечения имеет определение структуры атеросклеротической бляшки - является ли она относительно "стабильной", плотной или же неблагоприятной, "мягкой", являющей источником эмболии.

ДС позволяет оценить кровообращение нижних конечностей, достаточность притока крови и венозного оттока, состояние клапанного аппарата вен, наличие варикозной болезни, тромбофлебита, состояние системы компенсации и т.д.

Эхо-энцефалография - метод исследования головного мозга с помощью ультразвука. Исследование позволяет определить грубые смещения срединных структур головного мозга, расширение мозговых желудочков, выявить признаки внутричерепной гипертензии. Достоинства метода - полная безопасность, неинвазивность, высокая информативность для диагностики внутричерепной гипертензии, возможность и удобство при исследовании в динамике, использование для оценки эффективности терапии.

Электроэнцефалография (ЭЭГ). ЭЭГ - метод регистрации биоэлектрической активности головного мозга. Электроэнцефалография (ЭЭГ) нередко играет решающую роль в диагностике заболеваний, проявляющихся приступами потери сознания, судорогами, падениями, обмороками, вегетативными кризами.

ЭЭГ необходима в диагностике таких заболеваний как эпилепсия, нарколепсия, пароксизмальная дистония, панические атаки, истерия, лекарственная интоксикация.

Спектральный анализ мощности ЭЭГ - количественный анализ состояния биоэлектрической активности мозга, связанный с соотношением различных ритмических составляющих и определения их индивидуальной выраженности. Этот метод позволяет объективно оценить особенности функционального состояния мозга, что важно при уточнении диагноза, прогнозе течения заболевания и выработке тактики лечения пациента.

Картирование ЭЭГ - графическое отображение распределения мощности динамических электрических полей, отражающих функционирование мозга. При ряде заболеваний биоэлектрическая активность может меняться в строго определенных зонах мозга, нарушается соотношение активности правого и левого полушарий, передних и задних отделов мозга, ответственных за разные функции. Картирование ЭЭГ помогает неврологу получить более полное представление об участии в патологическом процессе отдельных структур мозга и нарушении их координированной деятельности.

Наша клиника для диагностики (исследования) нервной системы располагает новой портативной системой исследования сна "Embletta" (Исландия). Эта система позволяет зарегистрировать храп, дыхание, движение грудной и брюшной стенок, насыщение крови кислородом и объективно определить, имеются ли остановки дыхания во сне. В отличие от других методов изучения сна, для проведения этого исследования Вам не нужно будет приезжать в специальную лабораторию сна. Специалист нашей клиники приедет к Вам на дом и установит систему в привычной и комфортной для Вас обстановке. Система сама без участия врача запишет показатели Вашего сна. Когда нет никаких отвлекающих факторов, Ваш сон наиболее приближен к обычному, а значит, удастся зарегистрировать все тревожащие Вас симптомы. При выявлении признаков синдрома остановки дыхания во сне самым эффективным является лечение с помощью создания постоянного положительного давления в дыхательных путях. Метод получил название CPAP-терапия (аббревиатура английских слов Continuous Positive Airway Pressure - постоянное положительное давление в дыхательных путях).

Медленные потенциалы - метод, позволяющий получить представление об уровне энергетических затрат головного мозга. Метод важен при обследовании пациентов с мышечной дистонией, болезнью Паркинсона, хронической недостаточностью мозгового кровообращения, астенией, депрессией.

Вызванные потенциалы головного мозга - вызванные потенциалы (ВП) - биоэлектрическая активность головного мозга, возникающая в ответ на предъявление зрительных, слуховых стимулов, либо в ответ на электростимуляцию периферических нервов (срединного, большеберцового, тройничного и др.).

Соответственно различают Зрительные ВП, Слуховые ВП и Соматосенсорные ВП. Регистрация биоэлектрической активности производится поверхностными электродами, накладывающимися на кожу в различных областях головы.

Зрительные ВП - позволяют оценить функциональное состояние зрительного пути на всем протяжении от сетчатки глаза до коркового представительства. ЗВП являются одним из наиболее информативных методов при диагностике рассеянного склероза, поражения зрительного нерва различной этиологии (воспаление, опухоль и др.).

Вызванные зрительные потенциалы - метод исследования, позволяющий изучить систему зрения, определить наличие или отсутствие повреждения от сетчатки глаза до коры головного мозга. Это исследование помогает в диагностике рассеянного склероза, ретробульбарного неврита и др., а также позволяет определить прогноз зрительных нарушений при таких заболеваниях как глаукома, височный артериит, сахарный диабет и некоторых других.

Слуховые ВП - позволяют тестировать функцию слухового нерва, а также достаточно точно локализовать поражение в т.н. стволовых церебральных структурах. Патологические изменения ВП этой модальности обнаруживаются при рассеянном склерозе, опухолях глубинной локализации, неврите слухового нерва и др.

Вызванные слуховые потенциалы - метод исследования слуховой системы. Информация, получаемая посредством этого метода, имеет большую диагностическую ценность, так как дает возможность определить уровень и характер поражения слуховой и вестибулярной системы на всем ее протяжении от рецепторов уха до коры головного мозга. Это исследование необходимо людям, страдающим головокружением, снижением слуха, шумом и звоном в ушах, вестибулярными расстройствами. Метод также полезен при обследовании пациентов с патологией ЛОР-органов (отиты, отосклероз, нейросенсорная тугоухость)

Соматосенсорные ВП - содержат ценную информацию о проводящей функции путей так называемого соматосенсорного анализатора (рецепторы мышц и суставов и т.п.). Применение этой методики наиболее оправданно при диагностике поражения центральной нервной системы (напр. при рассеянном склерозе), а также поражения плечевого сплетения.

Вызванные соматосенсорные потенциалы - метод позволяет исследовать состояние чувствительной системы от рецепторов кожи рук и ног до коры головного мозга. Играет большую роль в диагностике рассеянного склероза, фуникулярного миелоза, полинейропатии, болезни Штрюмпеля, различных заболеваниях спинного мозга. Метод имеет важное значение в исключении тяжелого прогрессирующего заболевания - бокового амиотрофического склероза. Это исследование необходимо людям с жалобами на онемение в руках и ногах, при нарушении болевой, температурной и других видов чувствительности, неустойчивости при ходьбе, головокружении.

Тригеминальные ВП - (при стимуляции тройничного нерва) являются признанным методом оценки функционального состояния системы тройничного нерва. Исследование тригеминальных ВП показано при нейропатии, невралгии тройничного нерва, головных болях.

Тригеминальные вызванные потенциалы - исследование системы тройничного нерва - нерва, обеспечивающего чувствительность в области лица и головы. Метод информативен при подозрении на такие заболевания как нейропатия тройничного нерва (травматического, инфекционного, компрессионного, дисметаболического происхождения), невралгия тройничного нерва, а также представляет ценность при исследовании пациентов с нейростоматологическими нарушениями, мигренью, лицевыми болями.

Вызванные кожные симпатические потенциалы - метод исследования состояния вегетативной нервной системы. ВНС отвечает за такие функции, как за потоотделение, тонус сосудов, частота дыхания и сердечных сокращений. Ее функции могут нарушаться как в сторону снижения ее активности, так и повышения. Это имеет важное значение в диагностике и лечении вегетативных расстройств, которые могут быть проявлением как первичных (доброкачественных, неорганических) заболеваний (например, локальный гипергидроз ладоней, болезнь Рейно, ортостатические обмороки), так и серьезных органических заболеваний (болезнь Паркинсона, сирингомиелия, миелопатия сосудистая).

Транскраниальная магнитная стимуляция - метод исследования различных уровней нервной системы, отвечающих за движение и силу, позволяет выявлять нарушения на протяжении от коры головного мозга до мышц, оценить возбудимость нервных клеток коры головного мозга. Метод применяется в диагностике рассеянного склероза и двигательных расстройствах, а также для объективной оценки степени повреждения двигательных путей при парезах и параличах (после инсульта, травмы спинного мозга).

Определение скорости проведения по двигательным нервам - исследование, позволяющее получить информацию о целостности и функциях периферических двигательных нервов рук и ног. Проводится пациентам, предъявляющим жалобы на снижение силы/слабость в мышцах или группах мышц, что может быть следствием поражения периферических двигательных нервов при их сдавлении спазмированными мышцами и/или костно-суставными структурами, при полинейропатиях различного происхождения, при травмах конечностей. Результаты исследования помогают выработать тактику лечения, определить показания к хирургическому вмешательству.

Определение скорости проведения по чувствительным нервам - методика, позволяет получить информацию о целостности и функциях периферических чувствительных нервов рук и ног, выявить скрытые нарушения (когда симптомы заболевания еще отсутствуют), определить показания к профилактической терапии, в ряде случаев - исключить органический характер заболевания. Исключительно важна при диагностике неврологических проявлений и осложнений сахарного диабета, алкоголизма, хронических и острых интоксикаций, вирусных поражений периферических нервов, нарушений обмена веществ и при некоторых других патологических состояниях. Исследование проводится пациентам, предъявляющим жалобы на онемение, жжение, покалывание и другие нарушения чувствительности в руках и ногах.

Мигательный рефлекс - исследование осуществляется для оценки скорости проведения импульсов в системе тройничный-лицевой нервы, с целью изучения функционального состояния глубинных структур (ствола) мозга. Метод показан людям, страдающим лицевыми болями, при подозрении на поражение тройничного или лицевого нервов, нейростоматологических проблемах.

Экcтероцептивная супрессия произвольной активности мышц - в основе метода лежит оценка тригемино-тригеминального рефлекса, что позволяет исследовать чувствительные и двигательные волокна тройничного нерва и связанные с ними структуры головного мозга. Метод высокоинформативен при заболеваниях тройничного нерва, лицевых и головных болях, других хронических болевых синдромах в том числе патологии височно-нижнечелюстного сустава, а также различных полинейропатиях.

ЭлектроНейроМиография (ЭНМГ). Электронейромиография - исследование биопотенциалов мышц (нервов) с помощью специальных электродов в покое и при функциональной активации.

Электронейромиография относится к электродиагностическим исследованиям и в свою очередь подразделяется на игольчатую ЭМГ, стимуляционную ЭМГ и электронейрографию. Метод позволяет проводить диагностику заболеваний периферической нервной системы, проявляющихся онемением, болью в конечностях, слабостью, повышенной утомляемостью мышц, параличом. ЭНМГ также информативна при ряде других заболеваний: неврите тройничного, лицевого нервов, лицевом гемиспазме и др.

Исследование F-волны, Н-рефлекса - специальные методы оценки целостности и функций сегментов спинного мозга, корешков спинномозговых нервов, нервных волокон, ответственных за поддержание тонуса мышц. Эти исследования применяются при объективной диагностике корешковых синдромов (так называемых "радикулитов"), сдавления спинномозговых нервов, повышения мышечного тонуса (напр., спастичность после инсульта, ригидность при болезни Паркинсона).

А) Нейронография – экспериментальная методика регистрации электрической активности отдельных нейронов с помощью микроэлектродной техники.

Б) Электрокортикография - метод изучения суммарной биоэлектрической активности мозга, отводимой с поверхности коры больших полушарий мозга. Метод имеет экспериментальное значение, крайне редко может применятся в клинических условиях при нейрохирургических операциях.

В) Электроэнцефалография

Электроэнцефалография (ЭЭГ) – метод изучения суммарной биоэлектрической активности мозга, отводимой с поверхности кожи головы. Метод широко используется в клинике и дает возможность провести качественный и количественный анализ функционального состояния головного мозга и его реакций на действие раздражителей.

Основные ритмы ЭЭГ:

Наименование Вид Частота Амплитуда Характеристика
Альфа-ритм 8-13 Гц 50 мкВ Регистрируется в покое и при закрытых глазах
Бета-ритм 14-30 Гц До 25 мкВ Характерен для состояния активной деятельности
Тета-ритм 4-7 Гц 100-150 мкВ Наблюдается во время сна, при некоторых заболеваниях.
Дельта-ритм 1-3 Гц При глубоком сне и наркозе
Гамма-ритм 30-35 Гц До 15 мкВ Регистрируется в передних отделах мозга при патологических состояниях.
Судорожные пароксизмальные волны

Синхронизация - появление на ЭЭГ медленных волн, характерна для неактивного состояния

Десинхронизация - появление на ЭЭГ более быстрых колебаний меньшей амплитуды, которые свидетельствуют о состоянии активации головного мозга.

Методика ЭЭГ: С помощью специальных контактных электродов, фиксированных шлемом к коже головы, регистрируют разность потенциалов либо между двумя активными электродами, либо между активным и инертным электродом. Для уменьшения электрического сопротивления кожи в местах контакта с электродами ее обрабатывают жирорастворяющими веществами (спиртом, эфиром), а марлевые прокладки смачивают специальной электропроводной пастой. Во время записи ЭЭГ испытуемый должен находится в позе, обеспечивающей расслабление мускулатуры. Сначала записывают фоновую активность, затем проводят функциональные пробы (с открыванием и закрыванием глаз, ритмическую фотостимуляцию, психологические тесты). Так, открывание глаз приводит к угнетению альфа-ритма – десинхронизации.

1. Конечный мозг: общий план строения, цито- и миелоархитектоника коры больших полушарий (КБП). Динамическая локализация функций в КБП. Понятие о сенсорных, моторных и ассоциативных зонах коры больших полушарий.

2. Анатомия базальных ядер. Роль базальных ядер в формировании мышечного тонуса и сложных двигательных актов.

3. Морфофункциональная характеристика мозжечка. Признаки его повреждения.

4. Методы исследования ЦНС.

· Письменно выполните работу : В тетради протоколов зарисуйте схему пирамидного (кортикоспинального) тракта. Укажите локализацию в организме тел нейронов, аксоны которых составляют пирамидный тракт, особенности прохождения пирамидного тракта через ствол мозга. Охарактеризуйте функции пирамидного тракта и основные симптомы его повреждения.

ЛАБОРАТОРНАЯ РАБОТА

Работа № 1.

Электроэнцефалография человека.

С помощью системы Biopac Student Lab провести регистрацию ЭЭГ у испытуемого 1) в расслабленном состоянии с закрытыми глазами; 2) с закрытыми глазами при решении умственной задачи; 3) с закрытыми глазами после пробы с гипервентиляцией; 4) с открытыми глазами. Оцените частоту и амплитуду регистрируемых ритмов ЭЭГ. В выводе дайте характеристику основным ритмам ЭЭГ, регистрируемым в разных состояниях.

Работа № 2.

Функциональные пробы на выявление поражения мозжечка

1) Проба Ромберга. Испытуемый с закрытыми глазами вытягивает руки вперед, и ставит ступни ног в одну линию – одна перед другой. Невозможность удержать равновесие в позе Ромберга свидетельствует о нарушении равновесия и поражении архицеребеллюм – наиболее филогенетически древних структур мозжечка.

2) Пальценосовая проба. Испытуемому предлагают указательным пальцем дотронутся до кончика своего носа. Движение руки к носу должно проводится плавно, сначала с открытыми, потом с закрытыми глазами. При поражении мозжечка (нарушении палеоцеребеллюм) испытуемый промахивается, по мере приближения пальца к носу появляется тремор (дрожание) руки.

3) Проба Шильбера. Испытуемый вытягивает руки вперед, закрывает глаза, поднимает одну руку вертикально вверх, а затем опускает до уровня вытянутой горизонтально другой руки. При поражении мозжечка наблюдается гиперметрия – рука опускается ниже горизонтального уровня.

4) Проба на адиадохокинез. Испытуемому предлагают быстро провести попеременно противоположные, сложно координированные движения, например, пронировать и супинировать кисти вытянутых рук. При поражении мозжечка (неоцеребеллюм) испытуемый не может выполнить координированные движения.

1) Какие симптомы будут наблюдаться у пациента, если произошло кровоизлияние во внутреннюю капсулу левой половины головного мозга, где проходит пирамидный тракт?

2) Какой отдел ЦНС поражен, если у пациента наблюдаются гипокинезия и тремор в покое?

Занятие № 21

Тема занятия : Анатомия и физиология вегетативной нервной системы

Цель занятия: Изучить общие принципы строения и функционирования вегетативной нервной системы, основные виды вегетативных рефлексов, общие принципы нервной регуляции деятельности внутренних органов.

1) Лекционный материал.

2) Логинов А.В. Физиология с основами анатомии человека. – М, 1983. – 373-388.

3) Алипов Н.Н. Основы медицинской физиологии. – М., 2008. – С. 93-98.

4) Физиология человека / Под ред. Г.И.Косицкого. – М., 1985. – С. 158-178.

Вопросы для самостоятельной внеаудиторной работы студентов:

1. Структурно-функциональные особенности вегетативной нервной системы (ВНС).

2. Характеристика нервных центров симпатической нервной системы (СНС), их локализация.

3. Характеристика нервных центров парасимпатической нервной системы (ПСНС), их локализация.

4. Понятие метасимпатической нервной системы; особенности структуры и функции вегетативных ганглиев как периферических нервных центров регуляции вегетативных функций.

5. Особенности влияния СНС и ПСНС на внутренние органы; представления об относительном антагонизме их действия.

6. Понятия холинергических и адренергических систем.

7. Высшие центры регуляции вегетативными функциями (гипоталамус, лимбическая система, мозжечок, кора больших полушарий).

· Пользуясь материалами лекции и учебников, заполните таблицу «Сравнительная характеристика эффектов симпатической и парасимпатической нервной системы».

ЛАБОРАТОРНАЯ РАБОТА

Работа 1.

Зарисовка схем рефлексов симпатической и парасимпатической нервной системы.

В тетради практических работ зарисовать схемы рефлексов СНС и ПСНС с указанием составных элементов, медиаторов и рецепторов; провести сравнительный анализ рефлекторных дуг вегетативных и соматических (спинальных) рефлексов.

Работа 2.

Исследование глазо-сердечного рефлекса Данини-Ашнера

Методика:

1. У испытуемого в состоянии покоя по пульсу определяют частоту сердечных сокращений за 1 мин.

2. Осуществляют умеренное надавливание испытуемому на глазные яблоки большим и указательным пальцем в течение 20 сек. При этом, через 5 сек после начала надавливания, определяют частоту сердечных сокращений у испытуемого по пульсу за 15 сек. Вычисляют частоту сердечных сокращений по время пробы за 1 мин.

3. У испытуемого через 5 мин после проведения пробы по пульсу определяют частоту сердечных сокращений за 1 мин.

Результаты исследования заносят в таблицу:

Сравнить полученные результаты у трех испытуемых.

Рефлекс считается положительным, если у испытуемого имело место снижение частоты сердечных сокращений на 4-12 ударов в мин;

Если частота сердечных сокращений не изменилась, или уменьшилась менее чем на 4 удара в мин такая проба считается ареактивной.

Если частота сердечных сокращений снизилась более чем на 12 ударов в мин, то такая реакция считается чрезмерной и может свидетельствовать о наличие у испытуемого выраженной ваготонии.

Если частота сердечных сокращений при проведении пробы увеличилась, то имеет место либо неправильное выполнение пробы (чрезмерное надавливание), либо у испытуемого - симпатикотония.

Нарисуйте рефлекторную дугу данного рефлекса с обозначением элементов.

В выводе объясните механизм реализации рефлекса; укажите, как вегетативная нервная система влияет на работу сердца.

Для проверки усвоения материала ответьте на следующие вопросы:

1) Как изменяется действие на эффекторы симпатической и парасимпатической нервной системы при введении атропина?

2) Время какого вегетативного рефлекса (симпатического или парасимпатического) больше и почему? При ответе на вопрос вспомните тип преганглионарных и постганглионарных волокон и скорость проведения импульса о этим волокнам.

3) Объясните механизм расширения зрачков у человека при волнении или боли.

4) Длительным раздражением соматического нерва мышца нервно-мышечного препарата доведена до утомления и прекратила отвечать на раздражитель. Что произойдет с ней, если параллельно начать раздражение симпатического нерва, идущего к ней?

5) У вегетативных или соматических нервных волокон больше реобаза и хронаксия? Лабильность каких структур выше – соматических ли вегетативных?

6) Так называемый «детектор лжи» предназначен для проверки того, говорит ли человек правду, отвечая на задаваемые вопросы. Принцип работы прибора основан на использовании влияния КБП на вегетативные функции и трудности контроля над вегетатикой. Предложите параметры, которые этот прибор может регистрировать

7) Животным в эксперименте вводили два различных лекарственных препарата. В первом случае наблюдали расширение зрачка и побледнение кожи; во втором случае – сужение зрачка и отсутствие реакции кожных кровеносных сосудов. Объясните механизм действия препаратов.

Занятие № 22

Основные методы исследования ЦНС и нервно-мышечного аппарата - электроэнцефалография (ЭЭГ ), реоэнцефалография (РЭГ), электромиография (ЭМГ), определяют статическую устойчивость, тонус мышц, сухожильные рефлексы и др.

Электроэнцефалография (ЭЭГ) - метод регистрации электрической активности (биотоков) мозговой ткани с целью объективной оценки функционального состояния головного мозга. Она имеет большое значение для диагностики травмы головного мозга, сосудистых и воспалительных заболеваний мозга, а также для контроля за функциональным состоянием спортсмена, выявления ранних форм неврозов, для лечения и при отборе в спортивные секции (особенно в бокс, карате и другие виды спорта, связанные с нанесением ударов по голове). При анализе данных, полученных как в состоянии покоя, так и при функциональных нагрузках, различных воздействиях извне в виде света, звука и др.), учитывается амплитуда волн, их частота и ритм. У здорового человека преобладают альфа-волны (частота колебаний 8-12 в 1 с), регистрируемые только при закрытых глазах обследуемого. При наличии афферентной световой импульсации открытые глаза, альфа-ритм полностью исчезает и вновь восстанавливается, когда глаза закрываются. Это явление называется реакцией активации основного ритма. В норме она должна регистрироваться. Бета-волны имеют частоту колебаний 15-32 в 1 с, а медленные волны представляют собой тэта-волны (с диапазоном колебаний 4-7 с) и дельта - волны (с еще меньшей частотой колебаний). У 35-40% людей в правом полушарии амплитуда альфа-волн несколько выше, чем в левом, отмечается и некоторая разница в частоте колебаний - на 0,5-1 колебание в секунду.

При травмах головы альфа-ритм отсутствует, но появляются колебания большой частоты и амплитуды и медленные волны. Кроме того, методом ЭЭГ можно диагностировать ранние признаки неврозов (переутомлений, перетренированости) у спортсменов.

Реоэнцефалография (РЭГ) - метод исследования церебрального кровотока, основанный на регистрации ритмических изменений электрического сопротивления мозговой ткани вследствие пульсовых колебаний кровенаполнения сосудов. Реоэнцефалограмма состоит из повторяющихся волн и зубцов. При ее оценке учитывают характеристику зубцов, амплитуду реографической (систолической) волн и др. О состоянии сосудистого тонуса можно судить также по крутизне восходящей фазы. Патологическими показателями являются углубление инцизуры и увеличение дикротического зубца со сдвигом их вниз по нисходящей части кривой, что характеризует понижение тонуса стенки сосуда.

Метод РЭГ используется при диагностике хронических нарушений мозгового кровообращения, вегетососудистой дистонии, головных болях и других изменениях сосудов головного мозга, а также при диагностике патологических процессов, возникающих в результате травм, сотрясений головного мозга и заболеваний, вторично влияющих на кровообращение в церебральных сосудах (шейный остеохондроз, аневризмы и др.).

Электромиография (ЭМГ) - метод исследования функционирования скелетных мышц посредством регистрации их электрической активности - биотоков, биопотенциалов. Для записи ЭМГ используют электромиографы. Отведение мышечных биопотенциалов осуществляется с помощью поверхностных (накладных) или игольчатых (вкалываемых) электродов. При исследовании мышц конечностей чаще всего записывают электро-миограммы с одноименных мышц обеих сторон. Сначала регистрируют ЭМ покоя при максимально расслабленном состоянии всей мышцы, а затем - при ее тоническом напряжении. По ЭМГ можно на ранних этапах определить (и предупредить возникновение травм мышц и сухожилий изменения биопотенциалов мышц, судить о функциональной способности нервно-мышечного аппарата, особенно мышц, наиболее загруженных в тренировке. По ЭМГ, в сочетании с биохимическими исследованиями (определение гистамина, мочевины в крови), можно определить ранние признаки неврозов (переутомление, перетренированность). Кроме того, множественной миографией определяют работ/ мышц в двигательном цикле (например, у гребцов, боксеров во время тестирования). ЭМГ характеризует деятельность мышц, состояние периферического и центрального двигательного нейрона. Анализ ЭМГ дается по амплитуде, форме, ритму, частоте колебаний потенциалов и других параметрах. Кроме того, при анализе ЭМГ определяют латентный период между подачей сигнала к сокращению мышц и появлением первых осцилляции на ЭМГ и латентный период исчезновения осцилляции после команды прекратить сокращения.

Хронаксиметрия - метод исследования возбудимости нервов в зависимости от времени действия раздражителя. Сначала определяется реобаза - сила тока, вызывающая пороговое сокращение, а затем - хронаксия.

Хронансия - это минимальное время прохождения тока силой в две реобазы, которое дает минимальное сокращение. Хронаксия исчисляется в сигмах (тысячных долях секунды). В норме хронаксия различных мышц составляет 0,0001-0,001 с. Установлено, что проксимальные мышцы имеют меньшую хронаксию, чем дистальные. Мышца и иннервирующий ее нерв имеют одинаковую хронаксию (изохронизм). Мышцы - синергисты имеют также одинаковую хронаксию. На верхних конечностях хронаксия мышц-сгибателей в два раза меньше хронаксии разгибателей, на нижних конечностях отмечается обратное соотношение. У спортсменов резко снижается хронаксия мышц и может увеличиваться разница хронаксии (анизохронаксия) сгибателей и разгибателей при перетренировке (переутомлении), миозитах, паратенонитах икроножной мышцы и др. Устойчивость в статическом положении можно изучать с помощью стабилографии, треморографии, пробы Ромберга и др.

БИП - ИНСТИТУТ ПРАВОВЕДЕНИЯ

М. В. ПИВОВАРЧИК

АНАТОМИЯ И ФИЗИОЛОГИЯ

ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Минск


БИП - ИНСТИТУТ ПРАВОВЕДЕНИЯ

М. В. ПИВОВАРЧИК

АНАТОМИЯ И ФИЗИОЛОГИЯ

ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Учебно-методическое пособие

Белорусского института правоведения

Рецнзенты: канд. биол. наук доцент Леднева И. В.,

канд. мед. наук, доцент Авдей Г. М.

Пивоварчик М. В.

Анатомия и физиология ЦНС: Учеб.-метод. пособие/ М. В. Пивоварчик. Мн.: ООО «БИП-С Плюс», 2005. – 88 с.

Пособие соответствует структуре курса «Анатомия и физиология центральной нервной системы», в нем рассматриваются основные темы, составляющие содержание курса. Подробно изложено общее строение нервной системы, спинного и головного мозга, описаны особенности строения и функционирования вегетативного и соматического отделов нервной системы человека, общие принципы ее функционирования. В конце каждой из девяти тем пособия содержатся вопросы для самоконтроля. Предназначено для студентов дневного и заочного отделений специальности психология.

© Пивоварчик М. В., 2005

ТЕМА 1. Методы исследования нервной системы.. 4

ТЕМА 2. Строение и функции нервной ткани. 7

ТЕМА 3. Физиология синаптической передачи. 19

ТЕМА 4. Общее строение нервной системы.. 26

ТЕМА 5. Строение и функции спинного мозга. 31

ТЕМА 6. Строение и функции головного мозга. 35

Тема 7. Двигательная функция центральной нервной системы.. 57

ТЕМА 8. Вегетативная нервная система. 70

Тема 9. Ощие принципы функционирования нервной системы.. 78

ОСНОВНАЯ ЛИТЕРАТУРА.. 87

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА.. 87


ТЕМА 1. Методы исследования нервной системы

Нейробиологические методы.

Метод магнитно-резонансной томографии.

Нейропсихологические методы.

Нейробиологические методы. В теоретических исследованиях физиологии нервной системы человека большую роль играет изучение центральной нервной системы животных. Эта область знаний получила название нейробиологии. Строение нервных клеток, а также протекающие в них процессы остаются неизменными как у примитивных животных, так и у человека. Исключение представляют большие полушария головного мозга. Поэтому нейробиолог всегда может изучать тот или иной вопрос физиологии головного мозга человека на более простых, дешевых и доступных объектах. Такими объектами могут быть беспозвоночные животные. В последние годы для этих целей все шире применяют прижизненные срезы головного мозга новорожденных крысят и морских свинок и даже культуру нервной ткани, выращенную в лаборатории. Такой материал может быть использован для исследования механизмов функционирования отдельных нервных клеток и их отростков. Например, у головоногих моллюсков (кальмара, каракатицы) имеются очень толстые, гигантские аксоны (диаметром 500 – 1000 мкм), по которым из головного ганглия передается возбуждение на мускулатуру мантии. Молекулярные механизмы возбуждения исследуются на этом объекте. У многих моллюсков в нервных ганглиях, заменяющих у них головной мозг, есть очень большие нейроны – диаметром до 1000 мкм. Эти нейроны используются при изучении работы ионных каналов, открытие и закрытие которых управляется химическими веществами.

Для регистрации биоэлектрической активности нейронов и их отростков применяют микроэлектродную технику, которая в зависимости от задач исследования имеет много особенностей. Обычно применяют два типа микроэлектродов – металлические и стеклянные. Для регистрации активности одиночных нейронов микроэлектрод закрепляют в специальном манипуляторе, который позволяет продвигать его в мозге животного с высокой точностью. В зависимости от задач исследования манипулятор может крепиться на черепе животного или отдельно. Характер регистрируемой биоэлектрической активности определяется диаметром кончика микроэлектрода. Например, при диаметре кончика микроэлектрода не более 5 мкм можно зарегистрировать потенциалы действия одиночных нейронов. При диаметре кончика микроэлектрода больше 10 мкм одновременно регистрируется активность десятков, а иногда и сотен нейронов.

Метод магнитно-резонансной томографии . Современные методы позволяют увидеть строение головного мозга человека, не повреждая его. Метод магнитно-резонансной томографии дает возможность на экране монитора наблюдать серию последовательных «срезов» головного мозга, не нанося ему никакого вреда. Этот метод позволяет исследовать, например, злокачественные образования головного мозга. Головной мозг облучают электромагнитным полем, применяя для этого специальный магнит. Под действием магнитного поля диполи жидкостей мозга (например, молекулы воды) принимают его направление. После снятия внешнего магнитного поля диполи возвращаются в исходное состояние, при этом возникает магнитный сигнал, который улавливается специальными датчиками. Затем это эхо обрабатывается с помощью мощного компьютера и методами компь-ютерной графики отображается на экране монитора.

Позитронно-эмиссионная томография. Еще более высоким разрешением обладает метод позитронно-эмиссионной томографии (ПЭТ). Исследование основано на введении в мозговой кровоток позитрон излучающего короткоживущего изотопа. Данные о распределении радиоактивности в мозге собираются компьютером в течение определенного времени сканирования и затем реконструируются в трехмерный образ.

Электрофизиологические методы. Еще в XVIII в. итальянский врач Луиджи Гальвани заметил, что отпрепарированные лапки лягушки сокращаются при соприкосновении с металлом. Он пришел к выводу, что мышцы и нервные клетки животных производят электричество. В России подобные исследования проводил И. М. Сеченов: ему впервые удалось зарегистрировать биоэлектрические колебания от продолговатого мозга лягушки. В начале XX в., используя уже значительно более совершенные приборы, шведский исследователь Г. Бергер зарегистрировал биоэлектрические потенциалы головного мозга человека, которые теперь называют электроэнцефалограммой (ЭЭГ). В этих исследованиях впервые был зарегистрирован основной ритм биотоков мозга человека – синусоидальные колебания с частотой 8 – 12 Гц, который получил название альфа-ритма. Современные методы клинической и экспериментальной электроэнцефалографии сделали значительный шаг вперед благодаря применению компь-ютеров. Обычно на поверхность скальпа при клиническом обследовании больного накладывают несколько десятков чашечковых электродов. Далее эти электроды соединяют с многоканальным усилителем. Современные усилители очень чувствительны и позволяют записывать электрические колебания от мозга амплитудой всего в несколько микровольт, затем компьютер обрабатывает ЭЭГ по каждому каналу.

При исследовании фоновой ЭЭГ ведущим показателем является альфа-ритм, который регистрируется преимущественно в задних отделах коры в состоянии спокойного бодрствования. При предъявлении сенсорных стимулов происходит подавление, или «блокада», альфа-ритма, продолжительность которой тем больше, чем сложнее изображение. Важным направлением в использовании ЭЭГ являются исследования пространственно-временных отношений потенциалов мозга при восприятии сенсорной информации, т. е. учет времени восприятия и его мозговой организации. Для этих целей производится синхронная многоканальная регистрация ЭЭГ в процессе восприятия. Кроме регистрации фоновой ЭЭГ для изучения работы мозга используют методы регистрации вызванных (ВП) или событийно-связанных (ССП) потенциаловмозга . Эти методы основаны на представлении о том, что вызванный или событийно-связанный, потенциал представляет собой реакцию мозга на сенсорное раздражение, по длительности сопоставимую со временем обработки стимула. Связанные с событиями потенциалы мозга представляют собой широкий класс электрофизиологических феноменов, которые специальными методами выделяются из «фоновой», или «сырой», электроэнцефалограммы. Популярность методов ВП и ССП объясняется простотой регистрации и возможностью наблюдать активность многих областей мозга в динамике в течение длительного времени при выполнении любых по сложности задач.

Классификация, строение и функции нейронов. Нейроглия.

ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ.

Центральнаянервнаясистема (ЦНС ) – это комплекс различных образований спинного и головного мозга, которые обеспечивают восприятие, переработку, хранение и воспроизведение информации, а также формирование адекватных реакций организма на изменения внешней и внутренней среды.

Структурным и функциональным элементом ЦНС являются нейроны. Это высокоспециализированные клетки организма, чрезвычайно различающиеся по своему строению и функциям. В ЦНС нет двух одинаковых нейронов. Мозг человека содержит 25 млрд. нейронов. В общем плане, все нейроны имеют тело – сому и отростки – дендриты и аксоны. Точной классификации нейронов нет, но их условно разделяют по структуре и функциям на следующие группы:

1. По форме тела.

· Многоугольные.

· Пирамидные.

· Круглые.

· Овальные.

2. По количеству и характеру отростков.

· Униполярные – имеют один отросток.

· Псевдоуниполярные – от тела отходит один отросток, который затем делится на 2 ветви.

· Биполярные – 2 отростка, один дендритоподобный, другой аксон.

· Мультиполярные – имеют 1 аксон и много дендритов.

3. По медиатору, выделяемому нейроном в синапсе.

· Холинэргические.

· Адренегрическим.

· Серотонинергические.

· Пептидергические и т.д.

4. По функциям.

· Афферентные или чувствительные. Служат для восприятия сигнала из внешней и внутренней среды и передачи их в ЦНС.

· Вставочные или интернейроны – промежуточные. Обеспечивают переработку, хранение и передачу информации эфферентным нейронам. Их в ЦНС больше всего.

· Эфферентные или двигательные. Формируют управляющие сигналы и передают их к периферическим нейронам и исполнительным органам.

5. По физиологической роли.

· Возбуждающие.

· Тормозные.

Сома нейронов покрыта многослойной мембраной, обеспечивающей проведение потенциала действия к начальному сегменту аксона – аксонному холмику. В соме расположено ядро, аппарат Гольджи, митохондрии, рибосомы. В рибосомах синтезируется тигроид, содержащий РНК и необходимый для синтеза белков. Особую роль играют микротрубочки и тонкие нити – нейрофиламенты. Они имеются в соме и отростках. Обеспечивают транспорт веществ от сомы по отросткам и обратно. Кроме того, за счет нейрофиламентов происходит движение отростков. На дендритах имеются выступы для синапсов – шипики, через которые в нейрон поступает информация. По аксонам сигнал идет к другим нейронам или исполнительным органам. Таким образом, общими функциями нейронов ЦНС являются прием, кодирование и хранение информации, а также выработка нейромедиаторов. Нейроны, с помощью многочисленных синапсов, получают сигналы в виде постсинаптических потенциалов. Затем перерабатывают эту информацию и формируют определенную ответную реакцию. Следовательно, они выполняют и интегративную, т.е. объединительную функцию.


Кроме нейронов в ЦНС имеются клетки нейроглии . Размеры глиальных клеток меньше чем нейронов, но составляют 10% объема мозга. В зависимости от размеров и количества отростков выделяют астроциты, олигодендроциты, микроглиоциты. Нейроны и глиальные клетки разделены узкой (20 нм) межклеточной щелью. Эти щели соединяются между собой и образуют внеклеточное пространство мозга, заполненное интерстициальной жидкостью. За счет этого пространства нейроны и глионы обеспечиваются кислородом, питательными веществами. Глиальные клетки ритмически увеличиваются и уменьшаются с частотой несколько колебаний в час. Это способствует току аксоплазмы по аксонам и продвижению межклеточной жидкости. Таким образом, глионы служат опорным аппаратом ЦНС, обеспечивают обменные процессы в нейронах, поглощают избыток нейромедиаторов и продукты их распада. Предполагают, что глия участвует в формирование условных рефлексов и памяти.

Существуют следующие методы исследования функций ЦНС:

1. Метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом.

2. Метод экстирпации (удаления) или разрушения участков мозга. Например, удаление мозжечка.

3. Метод раздражения различных отделов и центров мозга.

4. Анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующими патологоанатомическим исследованием.

5. Электрофизиологические методы:

· Электроэнцефалография – регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г. Бергером.

· Регистрация биопотенциалов различных нервных центров: используется вместе со стереотаксической техникой при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро.

· Метод вызванных потенциалов, регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков.

6. Метод внутримозгового введения веществ с помощью микроинофореза .

7. Хронорефлексометрия – определение времени рефлексов.

8. Метод моделирования .